ETSIES 201 873-9 va.1.1 (2009-06)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 9: Using XML schema with TTCN-3

D

2 ETSI ES 201 873-9 V4.1.1 (2009-06)

Reference
RES/MTS-00107-9 T3 ed411 XML

Keywords
MTS, testing, TTCN, XML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 201 873-9 V4.1.1 (2009-06)

Contents

INtelleCtual Property RIGNTSottt b et nre s 6
0] C2TLY 0] (o BTSSP 6
1 RS0t 0] 0 PSSP 7
2 L= =] (0= SO S 7
2.1 INOIMALIVE FETEIEICES ... vttt st e e et e e e et e etb e sbeesbe e beesbeeseesteesaeesbeebeenbeensesssesseesraens 7
2.2 INFOIMALIVE FETEIENCES cti ettt ettt st st e b e e ab e s ae e e be e ebeeabe e sbe e beesbesraesbeesbeesbeenreanes 8
3 Definitions and abhreViations............cciiieiiiiic et re e sttt e e raeereeere e 8
3.1 DBTINMITIONS ...ttt bttt h e e bbbtk b e bt e e e b e b bt e bRt e R e e e e b bRt h e bt Rt e et ne it 8
3.2 ADDFEVIALIONS ...ttt bbbt bbb bt bbb e e e b e bt e b ek e e Rt et bt bbbt b e bt e nnenne e 8
4 T T [Nt AT o S PSSPROUN 9
5 MapPPING XML SCREMAS ..ottt e e b 9
5.1 Namespaces and dOCUMENT FEFEIENCESciiiiiiii ettt sbe e 10
5.2 INBIMIE CONMVETSION ...ttt ettt h ekttt b bbbt e s e st b e e bt eb b e e b e s b e b e bt eb e b £ e b e e h b et e b e bt e bt eb e e b e ene e e e b e b 13
521 GBNEIAL... et bttt et bR b E R R R bR bR bbb bbbt e b e b e 13
522 NAIME CONVEISION TUIBS. ...ttt bbb b bbbt et b bbbt bt bt e e b b 13
523 Order OF the MAPPINGeoueeieiee bbb e e bbbt bt e e b et e st e bttt e e e e nnenre e 18
5.3 UNSUPPOITEA FEALUMES. ...ttt bbb bbbt bbbt bt b e it e e e b e bbb e e st e e b e b 18
6 BUITE-IN GALA TYPES o..vevicieiie ettt et st e e e s be s ae e sb e s teesbesbeete e besaeesbesteeneesresteentens 18
6.1 MEPPING OF TACEES ...ttt bbbt b bbb bbb et e eb e e bt ab e et e b e 19
6.1.1 L BNGEN bbb bbb e bbb 19
6.1.2 IVHINLENGEN ...t b bbb bbb bbbt bbbt b bbb 20
6.1.3 Y D T a0 USSR 20
6.1.4 L] T PRSP PT TP PP PR 20
6.1.5 ENUMBIALION ...ttt bbbtk h e b e bt bt e eb bt e bttt b e et e e e nn et 22
6.1.6 BT S o Lot SRRSO 24
6.1.7 IVIININCIUSIVE ...t b bbb bbb bt bt et e b eb bbbt et et eb e b 24
6.1.8 IMAXINCIUSIVE ...t bbbttt b e bt bbbt bt b e eb bbbt et et eb e b 24
6.1.9 IVIINEXCIUSIVE ...ttt ettt ettt et e et e et e e st e e ta e s he e s be e ebeebeeateeateeabesbeesbaesbaesteeneannas 25
6.1.10 IMIAXEXCIUSIVE ..ottt et e b e et e et e e s e e te e s baesbe e s beebesaeesabeeabeeasesbeesbaesbaesteeneannes 25
6.1.11 LI Lo [T 1 OSSO TP P PSR U PP TEURORO 25
6.2 ST TIIG Y DS . ettt ettt bbbt h bR R b h R R R R R R R bR bR bbbt b e 26
6.2.1 11110 TSSOSO P TSP U PP PP PP PRTPPRTPRRIN 26
6.2.2 N ToT 0= =0 Y1 o SRS 26
6.2.3 TIOKEIN ..ttt bbb b h ke E R R R R Rt R e R e bbbt b e bt n e e e b nnenr e 26
6.2.4 o0 LT TP T PR PR PR PRSI 27
6.2.5 INIMTOKEN ..otttk s et b s b bRt b e bRt b e b e st e b b et e b e et et e s e be b ene et nrens 27
6.2.6 INCINBITIE L.ttt bbbk b R e st b e Rtk e st e b e e st b ke st e b b s e b et e e bt be b e st et bns 27
6.2.7 5 OSSR 27
6.2.8 D P SRUPR 27
6.2.9 o N I O PSP 27
6.2.10 HEXAAECTMAI DINAIY ...t bbbt bbbt b et 27
6.2.11 BASE B4 DINAIY ...ttt bbb R bbb bbbt b et r e 28
6.2.12 ANY URI oo s 28
6.2.13 LANGUAGE ... s 28
6.2.14 N (@ N I 1 OSSOSO 28
6.3 a1 =0 [T Y o1 T OO R O P PRSPPI 28
6.3.1 101 (=0 T SRR OP P RPPRTR 28
6.3.2 oL LAY 1] =T =] SR 29
6.3.3 INON-POSITIVE INMEEYEEvveieieitieite ettt e ettt e e e e e s e st e te e te e teesaesseesae e st eesseesseesseesaaeeneneesnnes 29
6.3.4 INEGALIVE IMEEORT ...tttk bbb bbb bbb bbbt bbbt b b 29
6.3.5 NON-NEGALIVE INTEOET ...ttt b bbb bbb bbbttt b et b et s e b n e 29
6.3.6 0] 0 o PO TP U PP TP PROT 29
6.3.7 UNSTGNEA TOMNQ ..ttt b bbb bbbt b ettt bbbt 29

ETSI

6.3.8
6.3.9
6.3.10
6.3.11
6.3.12
6.3.13
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.8

7.1
7.1.1
7.1.2
7.13
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13
7.2

7.3

7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.5.3
7.6
7.6.1
7.6.1.1
7.6.1.2
7.6.2
7.6.2.1
7.6.2.2
7.6.3
7.6.4
7.6.5

4 ETSI ES 201 873-9 V4.1.1 (2009-06)

| S ST TS OTT U PP OR TP 29

L YT [T T USSR 30

IS 1[0 SO POV U PP PR OPR PPN 30
LSy [T IS o] o USSR 30
By et b bR bR R e e b e R R R e R R e R e e R b e bbbt Rt bttt eenh e 30
Ly To [T o) (USSR 30
FIOBE TYES ..ttt bbb bbb b h b bR b€ bR R R R R b e bR bR bt h bt b e 30
D =T |- | S S 30
[0 | ST 31

D To ¥ o] OSSP 31

I LT N 0L OO OO TSSOSO TP U RV UO PRV POURPO 31
DIUFBLION ...tttk b bbbt bt b e s e et e b eb e bt bt bt e b e et et e e bt bt e bt eb e e e en e e e b b 31
DAL NG TIME ...ttt ettt bbbt b st e R e et b e bt eb e bt bt et e eb b bt eb e et et neeen b 32
L0 U PP TOOP PPN 32

D U= PP R PR PSPPI 32
Gregorian Year ant MONENoiiii ettt e et e ste e taesteesaesreesreeareenreenes 32
(1= To o AT Va1 T: T ST R 32
Gregorian MONEN AN GAYc.eiiiiiie ettt et sb ettt sb ettt sb et b b nne e 32
GFEYOTTAN GAY ...ttt etttk sttt et bbb bbbt bkt e b et ekt eb et b e b e e bt eb e e ekt sb e eb e eb et et e nbe e et e ane e 33
GrEYOTTAN MONEN ...ttt bbb e bt b et b bttt e bbbt b e bbbt ab e e et abe et e ane e 33
SBOUBIICE TYIBS ...tttk ettt et r et bbbtk b e e h bbbt b et eh Rt AR e bbb st e e n e Rt Rt Rt ne e n e nne 33
NIMTOKENS ...ttt ettt ettt e e et Reese e st et e neesbe et e ebeeReeseene e eesaesbeameeneeneeneeneesaenee e 33

1 o SRS 33
EINTITIES ..ottt bbbt h et b e bbbt bt e b et e b et e e bt bt e bt bt e st e e b e b et 33
L0\ L0 T ST PO PR TROPRTRN 33

o T0 o] L= T T Y 0SSR 34
ANYTYPe and any SiMPIETYPE TYPES. . cuveireeiiee ettt et e et e e teesteesae s e e saeesreesaeesbeesteesteenteeneeaneas 34
MapPINg XSD COMPONENLES ...c.viivieieiteeie sttt se et te st este et e stesreesbeste e s e s beetsesbesteesbesteeseestesseesressaenrens 35
Attributes of XSD component deClarations............ccuiiiiiiiiiieiei et 35
Lo RSO 36
L= S 36
=L 0L OO TP U PP P PPPTRURROP 36
MINOCCUIS AN MAXOCCUIS. ...c.veeteieeiterteete sttt ettt ettt es b e e bt e b e ab e skt bt e beese e s b e nb e b e nbeebeaseeneenneabe b e 36
DETaUIT AN FIXEA ...t b bt bbbt eb e bbbttt ne e b b 37
0] 10 TP RU R PR PP 38
LN L= PP PSPPI UROPRTR 39
IVEEXEA .ttt bbbt h bbbt bt E e R b e R b e bR bR SR £ R e E bbbt R e eh et b e e nn b e 39
AADSTTACTttt bbbkt R e bR R R R R bbbt bt bt s n b e nr e 39

2] [oTed =T o To I 110 | TSP 39

AN T o] TSRS 39

L6 LT OO TP U PP R PPPTRPR 41
SUBSEITULION GFOUP ...ttt bbbtk b etk b ekt b e sb ekt eb e et eb et e ene e 41
SCNEIMA COMPONENT. ...ttt ettt bbb bbbtk b et b bbbt b ettt st n e 41
L= (=T L= o ot 0] 1] 1= | SR 41
Attribute and attribute group defiNitiONSccvviii i 42
Attribute element AEFINITIONSoiiiii et sr s 42
ALLFDULE group JefiNITIONS........i it e e re e ste e s teesaeenaeeneenreenreens 43
SIMPIETYPE COMPONENTSveeieeie ettt ste e et e et e e steesteeste e ee s e e saeesteebeenseaseeasaesseesseesteesseeseenseansennsensaenrenns 43
Derivation DY FESIICHIONccie ettt e e e e e enaeste e teesteeseeeaeannas 43
DEFIVALION DY TIST ...tttk b bbbttt 43
DEFIVALION DY UNION ...t b et bbbt b et 44
COMPIEXTYPE COMPONEINESeevetitisietiteeete ettt bbbttt e ket b bbbt b e bbbt bbbt et n e b n e 46
ComplexType containing SIMPIE CONTENTc.eiiiiiiiiiie et 46
EXtending SIMPIE CONTENT......c.oiiiiiiiiiie et bbb 46
RESLrICING SIMPIE CONENT.......iitiiiitiiteiet bbbt 47
ComplexType containing COMPIEX CONENToiiiiieiiei et sreesreenre s 47
Complex content derived by extending COMPIEX tYPES......ccuveieiiieiiieieeseese e eee et 48
Complex content derived DY reStrICHIONc.vciiiiiie e 52

(1o N oI elo] 4 gl o10] o T=] o1 K USSP U PP OPRTPN 53
AT CONMTENT ..ttt bt bbbt bbb e e et e b e e bt ekt e bt bt e b ekt eb e e bt e b e es b e e e b et erenes 53
CNOICE COMTENT ...ttt bt s et b ek bbbt e b et e bkt eb e bt e bt et eb e e bt bt eb e e e e e ntear e e 55

ETSI

5 ETSI ES 201 873-9 V4.1.1 (2009-06)

7.6.5.1 Choice With NESTEA BIEMENTSc.iiieiiere bbbt n e b ene s 55
7.6.5.2 ChOiCe With NESLEA GrOUDevveieeiiee ettt ettt e e e e e steesteeaeeneesneeansestaenteesteeteeseesneennees 56
7.6.5.3 Choice With NESTEA ChOICE........cueiieiee et 56
7.6.5.4 ChOice With NESEA SEOUENCE. ... eeivieieetesie ettt ettt te et e e s et steesteebeeseeaneeessesaeestaesteesteeeeeneeannas 57
7.6.5.5 (O T ot 1 g 1) o - T Y OSSP 58
7.6.6 =0 0 T=T ot oo g (=] | S PSP PP TROPRPTR 58
7.6.6.1 Sequence with nested element CONTENT.........ooiiiiiiiiire e e 58
7.6.6.2 Sequence With nested group CONTENTci ittt 59
7.6.6.3 Sequence With nested ChOICE CONTENTcoiiiiiiiieie e 59
7.6.6.4 Sequence With nested SEQUENCE CONTENT...........eiiiiiiiiieiete ettt 60
7.6.6.5 Sequence With NeSted @NY CONENT.........ciiiiiiiiiir bbb 60
7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the mapping........cccccevevv e iieiese s 61
7.6.7 Attribute definitions, attribute and attributeGroup referenCescovevvevie e 62
7.6.8 IMIEXEA CONEENT ...ttt bbbt h et b bbbt b e e e et e sb e bbbt e bt e e e e e b e b 64
7.7 F N V=TT B a1 7N (] o =SSR 67
7.8 ANINOTATION ..ttt bbbkttt b bbb Rt e b e E e b bt e b £ e b £ h e e b e bt et e b eE bt bt e Rt e et e nn e 69
7.9 (10N o JNelo] 401 010] 411 o] £ TSSO TP UPPTRR 69
Annex A (normative): TTCN-3MOAUIE XSD ..ottt 71
Annex B (normative): ENCOdiNG INSIFUCLIONS.....c.ciiiiiiciisiesese e 75
o 70 =T 0 =T | ST TRTPR 75
B.2 The XML eNCOUE ELIIDULEcuviviiiiiieiieie ettt 75
B.3 ENCOUING INSTIUCTIONSviiiiiietiitisicte ettt bbbttt b b e 76
B.3.1 XSD data type IdeNTITICALIONcceeieeiece et este e esat e te e teesteesteeeeannas 76
B.3.2 AN VA= 1= 1< o | SRS 76
B.3.3 AN V- L 001 SRS 77
B.3.4 AITTOULE L.ttt b ettt b et b e b e E e e bt E e e bt ekt R e R et e bt e Rt Ee bt ebenb et ereare e 77
B.3.5 ALrDUtEFOrMQUANITIE. ..ot e et e e et e s teesreesteeeeaneas 77
B.3.6 Control Namespace IdeNtifiCALIONcuviieiie et a e steebeesbeeneeeraenreens 78
B.3.7 DETAUIT FOr EIMPLY ..ttt bbb bbb bbb bt b et b bbbt 78
B.3.8 T80T 0| OSSP 78
B.3.9 ElementFOrmMQUANTIEo ettt bttt ereene et e nee e e ere e 78
B.3.10 EMBDEA VAIUESeoeiieiet ettt sttt ettt ettt e m et e et e beeee et e e Reem e e e e e e nbeeeeebeeneeneeeentenneaneas 79
[0 o ¢ PR UR TSRO 79
270 0 I 1 SO 80
o T B |- 1T U PR TPR PSPPI 80
B.3.14 Namespace ideNTITICALIONc.eiiiiieiece ettt et e e e e s s e st e s teesteesteenaeenbeenseansenneenreens 80
B.3.15 NIlIADIE BIEIMENTS.......ocee et b b bbbt e e b bt sb e bbb ene e e b et nne s 81
B.3.18 USE UNION....iiiiitiitiiiteti ettt bbbtk h ekt b e bRt e R e R e Rt e R £ e R e b e bt Rt bt bt ene e b b neare s 81
270 20 A 1= SO SOT SR 81
B.3.18 USE NUMDET ...ttt b ek bbb bbbt bt b btk e e e btk eh e bt bt nr e b b nenre s 82
e 00 T U 11N o (o L] USSR 82
B.3.20 WAItESPACE CONIOLttt et st e st e et et se e s e ee e e sbesaeebeaneeneessentenaeaneas 83
Annex C (informative): EXAMPIES. .. 84
C.1 EXAMPIE L.ttt b b bR bRt b bbb n e 84
C.2 EXAMPIE 2.t E et R b b e bt 85
(O T vV 0] o] L= TSSOSO 87
O V1 0] o L= SRS SRR 88
HISTOTY .ttt h et bbb bbbt oAt E e h bR bRt R bbb n et 90

ETSI

6 ETSI ES 201 873-9 V4.1.1 (2009-06)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI membersand non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 9 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

ETSI

http://webapp.etsi.org/IPR/home.asp

7 ETSI ES 201 873-9 V4.1.1 (2009-06)

1 Scope

The present document defines the mapping rules for W3C Schema (as defined in [7] to [9]) to TTCN-3 as defined in
ES 201 873-1 [1] to enable testing of XML-based systems, interfaces and protocols.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.

. Non-specific reference may be made only to a complete document or a part thereof and only in the following
cases:

- if it is accepted that it will be possible to use all future changes of the referenced document for the
purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references

The following referenced documents are indispensable for the application of the present document. For dated
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document
(including any amendments) applies.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

[2] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[3] ITU-T Recommendation X.680: "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation".

[4] ITU-T Recommendation X.694: "Information technology - ASN.1 encoding rules: Mapping W3C
XML schema definitions into ASN.1".

[5] W3C Recommendation: "Extensible Markup Language (XML) 1.1", World Wide Web
Consortium.

NOTE: Available at http://www.w3.0rg/TR/xml11.

[6] W3C Recommendation (2006): "Namespaces in XML 1.0", World Wide Web Consortium.

NOTE: Available at http://www.w3.0rg/TR/REC-xml-names/

[7] W3C Recommendation (2004): "XML Schema Part 0: Primer", World Wide Web Consortium.

NOTE: Available at http://www.w3.0org/TR/xmlschema-0.

[8] W3C Recommendation (2004): "XML Schema Part 1: Structures”, World Wide Web Consortium.

NOTE: Available at http://www.w3.0rg/TR/xmlschema-1.

ETSI

http://docbox.etsi.org/Reference
http://www.w3.org/TR/xml11
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-1

8 ETSI ES 201 873-9 V4.1.1 (2009-06)

[9] W3C Recommendation (2004): "XML Schema Part 2: Datatypes™, World Wide Web Consortium.

NOTE: Available at http://www.w3.0rg/TR/xmlschema-2.

2.2 Informative references

The following referenced documents are not essential to the use of the present document but they assist the user with
regard to a particular subject area. For non-specific references, the latest version of the referenced document (including
any amendments) applies.

[i.1] W3C Recommendation: "SOAP version 1.2, Part 1: Messaging Framework™, World Wide Web
Consortium.

NOTE: Available at http://www.w3.org/TR/soap12.

[i.2] ISO 8601:2004: "Data elements and interchange formats -- Information interchange --
Representation of dates and times".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], ITU-T
Recommendation X.694 [4] and the following apply:

schema component: generic XSD term for the building blocks that comprise the abstract data model of the schema

NOTE: The primary components, which may (type definitions) or obliged to (element and attribute declarations)
have names are as follows: simple type definitions, complex type definitions, attribute declarations and
element declarations. The secondary components, which are obliged to have names, are as follows:
attribute group definitions, identity-constraint definitions, model group definitions and notation
declarations. Finally, the "helper" components provide small parts of other components; they are not
independent of their context: annotations, model groups, particles, wildcards and attribute uses.

schema document: contains a collection of schema components, assembled in a schema element information item

NOTE: The target namespace of the schema document may be defined (specified by the targetNamespace
attribute of the schema element) or may be absent (identified by a missing targetNamespace attribute of
the schema element). The latter case is handled in the present document as a particular case of the target
namespace being defined.

target TTCN-3 module: TTCN-3 module, generated during the conversion, to which the TTCN-3 definition produced
by the translation of a given XSD declaration or definition is added

XML Schema: represented by a set of schema documents forming a complete specification (i.e. all definitions and
references are completely defined)

NOTE: The set may be composed of one or more schema documents, and in the latter case identifying one or
more target namespaces (including absence of the target namespace) and more than one schema
documents of the set may have the same target namespace (including absence of the target namespace).

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One

DTD Document Type Description

SOAP Simple Object Access Protocol

TTCN-3 Testing and Test Control Notation version 3

ETSI

http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/soap12

9 ETSI ES 201 873-9 V4.1.1 (2009-06)

URI Uniform Resource ldentifier
W3C World Wide Web Consortium
XML eXtensible Markup Language
XSD XML Schema Definition

4 Introduction

An increasing number of distributed applications use the XML format to exchange data for various purposes like data
bases queries or updates or event telecommunications operations such as provisioning. All of these data exchanges
follow very precise rules for data format description in the form of Document Type Description (DTD) [5] and [6] or
more recently the proposed XML Schemas [7], [8] and [9]. There are even some XML based communication protocols
like SOAP [i.1] that are based on XML Schemas. Like any other communication-based systems, components and
protocols, XML based systems, components and protocols are candidates for testing using TTCN-3 [1]. Consequently,
there is a need for establishing a mapping between XML data description techniques like DTD or Schemas to TTCN-3
standard data types.

The core language of TTCN-3 is defined in ES 201 873-1 [1] and provides a full text-based syntax, static semantics and
operational semantics as well as a definition for the use of the language with ASN.1 in part 7 [2] of this multi-part
deliverable. The XML mapping provides a definition for the use of the core language with XML Schema structures and
types, enabling integration of XML data with the language as shown in figure 1.

TTCN-3 < >

Core
ASN.1 Types o Tabular
& Values » Language format < >

R Graphical
XSD Types i format [T T
TTCN-3 User

Other Types R Presentation The shaded boxes are not
& Values , > format, > defined in this document

Figure 1. User's view of the core language and the various presentation formats

For compatibility reasons, the TTCN-3 code obtained from the XML Schema using the present document for an explicit
mapping shall be the same as the TTCN-3 code obtained from first converting the XML Schema using ITU-T
Recommendation X.694 [4] into ASN.1 [3] then converting the resulting ASN.1 into TTCN-3 code using

ES 201 873-7 [2]. Moreover, the XML document produced by the TTCN-3 code with encoding extensions obtained
from the XML Schema based on the present document shall be the same as the XML document produced by the ASN.1
with E-XER encoding based on ITU-T Recommendation X.694 [4] conversion of the same XML Schema.

5 Mapping XML Schemas

There are two approaches to the integration of XML Schema and TTCN-3, which will be referred to as implicit and
explicit mapping. The implicit mapping makes use of the import mechanism of TTCN-3, denoted by the keywords
language and import. It facilitates the immediate use of data specified in other languages. Therefore, the definition of a
specific data interface for each of these languages is required. The explicit mapping translates XML Schema definitions
directly into appropriate TTCN-3 language artefacts.

In case of an implicit mapping an internal representation shall be produced from the XML Schema, which
representation shall retain all the structural and encoding information. This internal representation is not accessible by
the user.

ETSI

10 ETSI ES 201 873-9 V4.1.1 (2009-06)

For explicit mapping, the information present in the XML Schema shall be mapped into accessible TTCN-3 code

and - the XML structural information which does not have its correspondent in TTCN-3 code - into accessible encoding
instructions. Built-in data types, described in detail in clause 6, in case of an implicit conversion are internal to the tool
and can be referenced directly by the user, while in case of an explicit conversion, the user shall have to import the
XSD.ttcn module (see annex A) in addition to the TTCN-3 modules resulted from the conversion. When importing from
an XSD Schema, the following language identifier strings shall be used:

e "XML" or "XML1.0" for W3C XML 1.0; and
e "XML1.1" for W3C XML 1.1.
All XSD definitions are public by default (see clause 8.2.3 of ES 201 873-1 [1]).

The examples of the present document are written in the assumption of explicit mapping, although the difference is
mainly in accessibility and visibility of generated TTCN-3 code and encoding instruction set.

The present document is structured in two distinct parts:

. Clause 6 "Built-in data types" defines the TTCN-3 mapping for all basic XSD data types like strings
(see clause 6.2), integers (see clause 6.3), floats (see clause 6.4), etc. and facets (see clause 6.1) that allow for a
simple modification of types by restriction of their properties (e.g. restricting the length of a string or the range
of an integer).

. Clause 7 "Mapping XSD components” covers the translation of more complex structures that are formed using
the components shown in table 1 and a set of XSD attributes (see clause 7.1) which allow for modification of
constraints of the resulting types.

Table 1: Overview of XSD constructs

Element Defines tags that can appear in a conforming XML document.

attribute Defines attributes for element tags in a conforming XML document.
Defines the simplest types. They may be a built-in type, a list or choice of built-in
types and they are not allowed to have attributes.

Defines types that are allowed to be composed, e.g. have attributes and an
internal structure.

named model group Defines a named group of elements.

Defines a group of attributes that can be used as a whole in definitions of
complexTypes.

Defines that a component has to exhibit certain properties in regard to
uniqueness and referencing.

simpleType

complexType

attribute group

identity constraint

5.1 Namespaces and document references

A single XSD Schema shall be translated to one or more TTCN-3 modules, corresponding to schema components that
have the same target namespace, including no target namespace, i.e. one TTCN-3 module shall be generated for each
target namespace (including absence of the target namespace) of the XML Schema. The names of the generated
TTCN-3 modules shall be the result of applying the name transformation rules in clause 5.2.2 to the related target
namespace, if it exists, or to the predefined name "NoTargetNamespace".

NOTE 1: More than one schema element information items in an XML Schema may have the same target
namespace, including the case of no target namespace.

All XSD import statements (i.e. import element information items and xmins attributes that are not identifying the target
namespace of the given schema) shall be mapped to equivalent TTCN-3 import statements, importing all definitions
from the other TTCN-3 module.

XSD include element information items, when the included schema element has the same target namespace as the
including one (implying the absence of the target namespace), shall be ignored. If the included schema element has no
target namespace but the including schema has (i.e. it is not absent), all definitions of the included schema shall be
mapped twice, i.e. the resulted TTCN-3 definitions shall be inserted to the TTCN-3 module generated for the schema
element(s) with no target namespace as well as to the module generated for the schema element(s) with the target
namespace of the including schema.

ETSI

11 ETSI ES 201 873-9 V4.1.1 (2009-06)

The information about the target namespaces and prefixes from the targetNamespace and xmins attributes of the
corresponding schema elements, if exist, (from the targetNamespace and xmlns attributes) shall be preserved in the
encoding instruction "namespace as..." attached to the TTCN-3 module. If the target namespace is absent, no
"namespace as ..." encoding instruction shall be attached to the TTCN-3 module. All declarations in the module shall
inherit the target namespace of the module (including absence of the target namespace).

NOTE 2: If the different schema elements using the same target namespace associates different prefixes to that
namespace, it is a tool implementation option, which prefix is preserved in the "namespace as..."
encoding instruction.

EXAMPLE 1: Schemas with the same namespace.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:nsl="http://www.example.org"
targetNamespace=" http://www.example.org">
<!-- makes no difference if this schema is including the next one -->

</schema>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.o0rg/2001/XMLSchema"
xmlns:ns2="http://www.example.org"
targetNamespace="http://www.example.org">
<!-- makes no difference if this schema is including the previous one -->

</schema>

//Will result the TTCN-3 module
module www_example org {
// the content of the module is coming from both schemas

with {

encode "XML";

variant "namespace as 'http://www.example.org' prefix 'nsl'"
// the prefix in the encoding instruction could also be 'ns2'

EXAMPLE 2: A schema with a target namespace is including a schema without a target namespace.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.o0rg/2001/XMLSchema"
xmlns:nsl="http://www.example.org"
targetNamespace="http://www.example.org">
<!-- the including schema -->
<include schemalLocation="included.xsd"/>

</schema>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema">
<!-- the included schema -->

</schema>

//Will result the TTCN-3 modules (please note, the content of the modules may come
// from more than one schemas.
module www_example org {

// contains definitions mapped from both schemas

with {
encode "XML";
variant "namespace as 'http://www.example.org' prefix 'nsl'"

}

module NoTargetNamespace {
// contains definitions mapped from the schema without target namespace only

with {
encode "XML"
1

ETSI

12 ETSI ES 201 873-9 V4.1.1 (2009-06)

If the TTCN-3 module corresponds to a (non absent) target namespace and the value of the attributeFormDefault and/or
elementFormDefault attributes of any schema element information items that contribute to the given TTCN-3 module is
gualified, the encoding instructions "attributeFormQualified™ and/or "elementFormQualified" shall
be attached correspondingly to the given TTCN-3 module. All fields of TTCN-3 definitions in the given TTCN-3
module corresponding to local attribute declarations or attribute and attributeGroup references in schema element
information items with the value of its attributeFormDefault attribute unqualified (explicitly or implicitly via
defaulting) shall be supplied with the "form as unqualified™ encoding instruction, unless a formattribute of the
given declaration requires differently (see clause 7.1.6). All fields of TTCN-3 definitions in the given TTCN-3 module
corresponding to local element declarations or element and model group references in schema element information
items with the value of its elementFormDefault attribute unqualified (explicitly or implicitly via defaulting) shall be
supplied with the "form as unqualified™ encoding instruction, unless a formattribute of the given declaration
requires differently (see clause 7.1.6).

The blockDefault, final Default, id, version and xml:lang attributes of schema elements shall be ignored.

EXAMPLE 3: Mapping of schema attributes.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org"
attributeFormDefault="qualified"
elementFormDefault="unqualified">
<complexType name="CTypel'">
<sequences
<element name="elem" type="integer"
</sequence>
<attribute name="attrib" type="integer"/>
</complexType></schema>
</schemas>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.org"
attributeFormDefault="unqualified"
elementFormDefault="qualified">
<complexType name="CType2">
<sequence>
<element name="elem" type="integer"
</sequence>
<attribute name="attrib" type="integer"/>
</complexType></schemas>
</schema>

//Will result the TTCN-3 modules (please note, the content of the modules may come
// from more than one schemas.
module www_example org {
type record CTypel ({
XSD.Integer attrib optional,
XSD.Integer elem

with {
variant (attrib) "attribute";
variant (elem) "form as unqualified"

}

type record CType2 {
XSD.Integer attrib optional,
XSD.Integer elem

with {
variant (attrib) "attribute";
variant (attrib) "form as unqualified"

}

with {
encode "XML";
variant "namespace as 'http://www.example.org'";
variant "attributeFormQualified";
variant "elementFormQualified"

}

The control namespace is the namespace of the type identification attributes (see e.g. clause 7.5.3) and to be used for
Schema instances (e.g. in the special XML attribute value "xsi:nil*, see mapping of the nillable XSD attribute in
clause 7.1.11). It shall be specified globally, with an encoding instruction attached to the TTCN-3 module.

ETSI

13 ETSI ES 201 873-9 V4.1.1 (2009-06)

EXAMPLE 4: Identifying the control namespace of a module.

module MyModule

?

with {
encode "XML";
variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'"

52 Name conversion

521 General

Translation of identifiers (e.g. type or field names) has a critical impact on the usability of conversion results: primarily,
it must guarantee TTCN-3 consistency, but, in order to support migration of conversion results from code generated
with tools based on ITU-T Recommendation X.694 [4], it must also generate identifiers compatible with that standard.
It must also support portability of conversion results (the TTCN-3 code and the encoding instruction set) between
TTCN-3 tools of different manufacturers, which is only possible if identifier conversion is standardized.

For different reasons a valid XSD identifier may not be a valid identifier in TTCN-3. For example, it is valid to specify
both an attribute and an element of the same name in XSD. When mapped in a naive fashion, this would result in two
different types with the same name in TTCN-3.

A name conversion algorithm has to guarantee that the translated identifier name:
a) is unique within the scope it is to be used;
b) contains only valid characters;
¢) isnota TTCN-3 keyword;
d) s not areserved word (e.g. "base" or "content").
The present document specifies the generation of:

a) TTCN-3 type reference names corresponding to the names of model group definitions, top-level element
declarations, top-level attribute declarations, top-level complex type definitions, and user-defined top-level
simple type definitions;

b) TTCN-3 identifiers corresponding to the names of top-level element declarations, top-level attribute
declarations, local element declarations, and local attribute declarations;

¢) TTCN-3 identifiers for the mapping of certain simple type definitions with an enumeration facet
(see clause 6.1.5);

d) TTCN-3 identifiers of certain sequence components introduced by the mapping (see clause 7).

All of these TTCN-3 names shall be generated by applying clause 5.2.2 either to the name of the corresponding schema
component, or to a member of the value of an enumeration facet, or to a specified character string, as specified in the
relevant clauses of the present document.

5.2.2 Name conversion rules

Names of attribute declarations, element declarations, model group definitions, user-defined top-level simple type
definitions, and top-level complex type definitions can be identical to TTCN-3 reserved words, can contain characters
not allowed in TTCN-3 identifiers. In addition, there are cases in which TTCN-3 names are required to be distinct
where the names of the corresponding XSD schema components (from which the TTCN-3 names are mapped) are
allowed to be identical.

ETSI

First,

14 ETSI ES 201 873-9 V4.1.1 (2009-06)

the character strings to be used as names in a TTCN-3 module, shall be ordered in accordance to clause 5.2.3
(i.e. primary ordering the character strings according to their categories as names of elements, followed by
names of attributes, followed by names of type definitions, followed by names of model groups, and
subsequently ordering in alphabetical order).

NOTE: The above ordering of character strings is necessary to produce the same final names for the same

definitions independent of the order in which tools are processing schema elements with the same target
namespace. It does not affect the order in which the generated TTCN-3 definitions are written to the
modules by tools.

Secondly, the following character substitutions shall be applied, in order, to each character string being mapped to a
TTCN-3 name, where each substitution (except the first) shall be applied to the result of the previous transformation:

b)

<)

d)

e)

9

h)

the characters " " (SPACE), "." (FULL STOP) and "-" (HYPEN-MINUS) shall all be replaced by a" " (LOW
LINE);

any character except "A" to "Z" (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z), "a" to "z"
(LATIN SMALL LETTER A to LATIN SMALL LETTER Z), "0" to "9" (DIGIT ZERO to DIGIT NINE), and
"_" (LOW LINE) shall be removed,;

a sequence of two or more "_" (LOW LINE) characters shall be replaced with a single *_" (LOW LINE);

(LOW LINE) characters occurring at the beginning or at the end of the name shall be removed;

if a character string that is to be used as a name of a TTCN-3 type starts with a lower-case letter, the first letter
shall be capitalized (converted to upper-case); if it starts with a digit (DIGIT ZERO to DIGIT NINE), it shall
be prefixed with an "X" (LATIN CAPITAL LETTER X) character;

if a character string that is to be used as an identifier of a structured type field or enumeration value starts with
an upper-case letter, the first letter shall be uncapitalized (converted to lower-case); if it starts with a digit
(DIGIT ZERO to DIGIT NINE), it shall be prefixed with an "x" (LATIN SMALL LETTER X) character;

if a character string that is to be used as a hame of a TTCN-3 type definition or as a type reference name is
empty, it shall be replaced by "X" (LATIN CAPITAL LETTER X); and

if a character string that is to be used a name of a record or union field or enumeration value is empty, it shall
be replaced by "x" (LATIN SMALL LETTER X).

Finally, depending on the kind of name being generated, one of the three following items shall apply.

)

k)

If the name being generated is the name of a TTCN-3 type and the character string generated by items a) to i)
above is identical to the name of another TTCN-3 type previously generated in the same TTCN-3 module, or
is one of the reserved words specified in clause 11.27 of ITU-T Recommendation X.680 [3], then a postfix
shall be appended to the character string generated according to the above rules. The postfix shall consist of a
" " (LOW LINE) followed by the canonical lexical representation (see W3C XML Schema Part 2 [9], 2.3.1)
of an integer. This integer shall be the least positive integer such that the new name is different from the type
reference name of any other TTCN-3 type assignment previously generated in any of those TTCN-3 modules.

If the name being generated is the identifier of a field of a record or a union type, and the character string
generated by the rules in items a) to i) above is identical to the identifier of a previously generated field
identifier of the same type, then a postfix shall be appended to the character string generated by the above
rules. The postfix shall consist of a” " (LOW LINE) followed by the canonical lexical representation (see
W3C XML Schema Part 2, 2.3.1) of an integer. This integer shall be the least positive integer such that the
new identifier is different from the identifier of any previously generated component of that sequence, set, or
choice type. Field names that are one of the TTCN-3 keywords (see clause A.1.5 of ES 201 873-1 [1]) or
names of predefined functions (see clause 16.1.2 of ES 201 873-1 [1]) after applying the postfix to clashing
field names, shall be suffixed by a single "_" (LOW LINE) character.

ETSI

15 ETSI ES 201 873-9 V4.1.1 (2009-06)

) If the name being generated is the identifier of an enumeration item (see clause 6.2.4 of ES 201 873-1[1]) of an
enumerated type, and the character string generated by the rules in items a) to i) above is identical to the
identifier of another enumeration item previously generated in the same enumerated type, then a postfix shall
be appended to the character string generated by the above rules. The postfix shall consist ofa™_" (LOW
LINE) followed by the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of an integer.
This integer shall be the least positive integer such that the new identifier is different from the identifier in any
other enumeration item already present in that TTCN-3 enumerated type. Enumeration names that are one of
the TTCN-3 keywords (see clause A.1.5 of ES 201 873-1 [1]) or hames of predefined functions (see clause
16.1.2 of ES 201 873-1 [1]) after applying the postfix to clashing enumeration names, shall be suffixed by a
single "_" (LOW LINE) character.

EXAMPLE 1: Conversion of an XML Schema composed of two schema elements with identical target
namespaces.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.o0rg/2001/XMLSchema"
targetNamespace="www.example.org/1l">
<!— this file is: includeCircularla.xsd -->
<include schemal.ocation="includeCircularlb.xsd"/>
<!-- simpleType "Foobar" -->
<simpleType name="Foobar">
<restriction base="integer"/>

</simpleType>

<!-- attribute "Foo-Bar" -->

<attribute name="Foo-Bar" type="integer"/>
<!-- attribute "Foo_Bar" -->

<attribute name="Foo Bar" type="integer"/>
<!-- attribute "Foobar" -->

<attribute name="Foobar" type="integer"/>
<!-- element "foobar" -->

<element name="foobar" type="integer"/>
<!-- element "Foobar" --»>

<element name="Foobar" type="integer"/>
<complexType name="Akarmi"s>

<sequence/>
<!-- complexType attribute "foobar" -->
<attribute name="foobar" type="integer"/>
<!-- complexType attribute "Foobar" -->
<attribute name="Foobar" type="integer"/>
</complexType>
</schema>

<?xml version="1.0" encoding="UTF-8"7?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.example.org/1l">

<!-- this file is: includeCircularlb.xsd -->
<include schemalocation="includeCircularla.xsd"/>
<!-- simpleType "foobar" -->

<simpleType name="foobar"s>
<restriction base="integer"/>

</simpleType>

<!-- attribute "foobar" -->

<attribute name="foobar" type="integer"/>
</schema>

//Will be translated to:
module www_example org 1 {
/* this file is: includeCircularla.xsd */
/* simpleType "Foobar" */
type XSD.Integer Foobar 4
// postfixed with " 4" as types are the third category and capital letters are preceding
// small letters in ISO 646.
with {
variant "name as 'Foobar'"
}

/* attribute "Foo-Bar" */
type XSD.Integer Foo_Bar
with {
variant "name as 'Foo-Bar'"; wvariant "attribute"
}

/* attribute "Foo_Bar" */
type XSD.Integer Foo Bar 1
// postfixed with " 1" as after changing dash to underscore in the name of the attribute

ETSI

16 ETSI ES 201 873-9 V4.1.1 (2009-06)

// "Foo-Bar", the names of the two types are clashing with each other.
with {
variant "name as 'Foo Bar'"; variant "attribute"

/* attribute "Foobar" */
type XSD.Integer Foobar 2
// postfixed with " 2" as attributes are the second category and capital letters are
// preceding small letters in ISO 646.
with {
variant "name as 'Foobar'";
variant "attribute"

}

/* element "foobar" */
type XSD.Integer Foobar 1
// postfixed with " 1" as elements are the first category and small letters are following
// capital letters in ISO 646.
with {
variant "name as 'foobar'";
variant "element"

}

/* element "Foobar" */
type XSD.Integer Foobar
// no postfix as elements are the first category and capital letters are preceding
// small letters in ISO 646.
with {
variant "element"
}

type record Akarmi {
/* complexType attribute "Foobar" *x/
XSD.Integer foobar optional,
/* complexType attribute "foobar" */
XSD.Integer foobar 1 optional

with {
variant (foobar) "name as capitalized";
variant (foobar_ 1) "name as 'foobar'";
variant (foobar, foobar 1) "attribute"

/* this file is: includeCircularlb.xsd*/
/* simpleType "foobar" */
type XSD.Integer Foobar 5
// postfixed with " 5" as types are the third category and small letters are following
// capital letters in ISO 646.
with {
variant "name as 'foobar'"
}

/* attribute "foobar" */
type XSD.Integer Foobar 3
// postfixed with " 3" as attributes are the second category and small letters are
// following capital letters in ISO 646.
with {
variant "name as 'foobar'";
variant "attribute"

}

with {

variant "namespace as 'www.example.org/l'"

For an TTCN-3 type definition name or field identifier that is generated by applying this clause to the name of an
element declaration, attribute declaration, top-level complex type definition or user-defined top-level simple type
definition, if the type definition name generated is different from the value of the name attribute of the corresponding
schema component, a final "name as..." variant attribute shall be attached to the TTCN-3 type definition with that type
definition name (or to the field with that identifier) as specified in the items below.

a) If the only difference is the case of the first letter (which is upper case in the type definition name and lower
case in the name), then the variant attribute "name as uncapitalized" shall be used.

ETSI

b)

<)

17 ETSI ES 201 873-9 V4.1.1 (2009-06)

If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the
name), then the variant attribute "name as capitalized" shall be applied to the field concerned or the
"name all as capitalized" shall be applied to the related type definition (in this case the attribute has effect on
all identifiers of all fields but not on the name of the type!).

Otherwise, the "name as '<name>'" variant attribute shall be used, where <name> is the value of the
corresponding name attribute.

EXAMPLE 2: Using the "name" variant attribute.

//The top-level complex type definition:
<xsd:complexType name="COMPONENTS" >

<xsd:sequence>
<xsd:element name="Elem" type="xsd:boolean"/>
<xsd:element name="elem" type="xsd:integer"/>
<xsd:element name="Elem-1" type="xsd:boolean"/>
<xsd:element name="elem-1" type="xsd:integer"/>
</xsd:sequences>

</xsd:complexType>

//is mapped to the TTCN-3 type assignment:
type record COMPONENTS_ 1

{

boolean elem,
integer elem 1,
boolean elem 1 1,
integer elem 1 2

with {
variant "name as 'COMPONENTS'";
variant (elem) "name as capitalized";

variant

variant

elem_ 1) "name as 'elem'";

(
variant (elem_1_1) "name as 'Elem-1'";
(

}i

elem 1 2) "name as 'elem-1'";

For an TTCN-3 identifier that is generated by applying this clause for the mapping of a simple type definition with an
enumeration facet where the identifier of the generated TTCN-3 enumeration value is different from the corresponding
member of the value of the enumeration facet, a "text as..." variant attribute shall be assigned to the TTCN-3
enumerated type, with qualifying information specifying the identifier of the enumeration item of the enumerated type.
One of the two following items shall apply:

a)

b)

c)

If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the
member of the value of the enumeration facet), then the "text "<TTCN-3 enumeration identifier>" as
capitalized" variant attribute shall be used.

If all TTCN-3 enumeration values differ in the case of the first letter only (which is lower case in the identifier
and upper case in the member of the value of the enumeration facet), then the "text all as capitalized™" variant
attribute shall be used.

Otherwise, the "text "<TTCN-3 enumeration identifier>" as "<member of the value of the enumeration facet>
variant attribute shall be used.

EXAMPLE 3: Using the "text as..." variant attribute.

//The XSD enumeration facet:
<xsd:simpleType name="state">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="Off"/>
<xsd:enumeration value="off"/>

</xsd:restriction>

</xsd:simpleType>

//Is mapped to the TTCN-3 type assignment:
type enumerated State { off, off 1 }
with {

variant "name as uncapitalized";
variant "text 'off' as capitalized";
variant "text 'off 1' as 'off'";

ETSI

18 ETSI ES 201 873-9 V4.1.1 (2009-06)

5.2.3 Order of the mapping

An order shall be imposed on the top-level schema components of the source XSD Schema on which the mapping is
performed. This applies to model group definitions, top-level complex type definitions, user-defined top-level simple
type definitions, top-level attribute declarations, and top-level element declarations.

NOTE 1: Other top-level schema components are not mapped to TTCN-3, and XSD built-in data types are mapped
in a special way.

The order is specified in the three following items:

a) Top-level schema components shall first be ordered by their target namespace, with the absent namespace
preceding all namespace names in ascending alphabetical order.

b) Within each target namespace, top-level schema components shall be divided into four sets ordered as follows:
1) element declarations;
2) attribute declarations;
3) complex type definitions and simple type definitions;
4) model group definitions.
¢) Within each set of item b), schema components shall be ordered by name in ascending alphabetical order.

TTCN-3 type definitions that correspond directly to the XSD schema components shall be generated in the order of the
corresponding XSD schema components.

5.3 Unsupported features

XSD and TTCN-3 are very distinct languages. Therefore some features of XSD have no equivalent in TTCN-3 or make
no sense when translated to the TTCN-3 language. Whenever possible, these features are translated into encoding
instructions completing the TTCN-3 code. The following list contains a compilation of these unsupported features:

a) Numeric types are not allowed to be restricted by patterns.

b) List types are not allowed to be restricted by enumerations or patterns.

¢) Specifying the number of fractional digits for float types is not supported.

d) Translation of the abstract attribute is not supported.

e) Translation of the block attribute is not supported.

f) Translation of the final attribute is not supported.

g) Translation of the substitutionGroup attribute and element substitution is not supported.

h) All time types (see clause 6.5) restrict year to 4 digits.

6 Built-in data types

XSD built-in data types may be primitive or derived types. The latter are gained from primitive types by means of a
restriction mechanism called facets. For the mapping of primitive types, a specific TTCN-3 module xsp is provided by
the present document, which defines the relation of XSD primitive types to TTCN-3 types. Whenever a hew simpleType
is defined, with a built-in XSD type as its base type, it shall be mapped directly from types defined in the module XSD:

EXAMPLE:

<simpleType name="el">
<restriction base="integer"/>
</simpleType>

ETSI

19 ETSI ES 201 873-9 V4.1.1 (2009-06)

//Becomes
type XSD.Integer E1
with {
variant "name as uncapitalized"
}

In the following clauses both the principle mappings of facets and the translation of primitive types are given. The
complete content of the XSD module is given in annex A.

6.1 Mapping of facets

Table 2 summarizes the facets for the built-in types that are supported in TTCN-3. Some of them may be supported in
XML Schema but have no counterpart in TTCN-3 and therefore no mark in table 2.

Table 2: Mapping support for facets of built-in types

min max min max min max total white
Facet | length Length | Length pattern | enum. Incl. Incl. Excl. Excl. Digits | Space
v v v v v
Type (see (see (see (see v (see
string note 1) | note 2) | note 2) | note 2) note 3)
integer v v
v
float v (see
note 4)
time v v
list v v v
boolean

NOTE 1: With the exception of QName which does not support length restriction.
NOTE 2: With the exception of hexBinary which does not support patterns.
NOTE 3: With the exception of some types (see clause 6.1.6).

NOTE 4: With the exception of decimal which does support totalDigits.

6.1.1 Length

The XSD facet length describes, how many units of length a value of the given simple type must have. For string and
data types derived from string, length is measured in units of characters. For hexBinary and base64Binary and data
types derived from them, length is measured in octets. For data types derived by list, length is measured in number of
list items. A length-restricted XSD type shall be mapped to a corresponding length restricted TTCN-3 type.

EXAMPLE 1:

<simpleType name="e2">
<restriction base="string"s>
<length value="10"/>
</restriction>
</simpleType>

Is translated to the following TTCN-3 type
type XSD.String E2 length(10)

with {
variant "name as uncapitalized"

For built-in list types (see clause 6.6) the number of elements of the resulting structure will be restricted.

EXAMPLE 2:

<simpleType name="e3">
<restriction base="NMTOKENS">
<length value="10"/>
</restrictions>
</simpleType>

ETSI

20 ETSI ES 201 873-9 V4.1.1 (2009-06)

//Mapped to TTCN-3:
type XSD.NMTOKENS E3 length (10)
with {

variant "name as uncapitalized"
}

6.1.2 MinLength

The XSD facet minLength describes the minimal length that a value of the given simple type shall have. It shall be
mapped to a length restriction in TTCN-3 with a set lower bound and an open upper bound. The fixed XSD attribute
(see clause 7.1.5) shall be ignored.

EXAMPLE:

<simpleType name="e4">
<restriction base="string"s>
<minLength value="3"/>
</restrictions>
</simpleType>

//Is translated to:
type XSD.String E4 length(3 .. infinity)
with {
variant "name as uncapitalized";
}

6.1.3 MaxLength

The XSD facet maxLength describes the maximal length that a value of the given simple type shall have. It shall be
mapped to a length restriction in TTCN-3 with a set upper bound and a lower bound zero. The fixed XSD attribute
(see clause 7.1.5) shall be ignored.

EXAMPLE:

<simpleType name="e5">
<restriction base="string"s>
<maxLength value="5"/>
</restriction>
</simpleType>

//Is mapped to:
type XSD.String E5 length(0 .. 5)
with {

variant "name as uncapitalized"
}

6.1.4 Pattern

The XSD pattern facet allows constraining the value space of XSD data types by restricting the value notation by a
regular expression. This facet is supported for XSD types derived directly or indirectly from the XSD string type. For
these types pattern facets shall directly be mapped to TTCN-3 pattern subtyping. As the syntax of XSD regular patterns
differs from the syntax of the TTCN-3 pattern subtyping, a mapping of the pattern expression has to be applied. The
symbols "(" (LEFT PARENTHESIS), ")" (RIGHT PARENTHESIS), "[" (VERTICAL LINE), "[" (LEFT SQUARE
BRACKET), "1" (RIGHT SQUARE BRACKET) and """ (CIRCUMFLEX ACCENT) shall not be changed and shall be
translated directly. Other meta characters shall be mapped according to tables 3 and 4.

ETSI

21 ETSI ES 201 873-9 V4.1.1 (2009-06)

Table 3: Translation of meta characters

XSD TTCN-3
?
\s [\g{0,0,0,201\q{0,0,0,10}\t\r]
(see note)
\S ["\g{0,0,0,20}\g{0,0,0,10}\t\r]
(see note)
\d \d
\D [N\d]
\w \w
\W [Mw]
\i [\WwAd:]
\l [MwAd:]
\c [\WwAd.\-_:]
\C [MwAd.\-_]

NOTE: \q{0,0,0,20} denotes the " "
(SPACE) graphical character and
\q{0,0,0,10} denotes the line feed
(LF) control character.

Table 4: Translation of quantifiers

XSD TTCN-3
? #(0,1)
+ #(1,)
* #(0,)
{n,m} #(n,m)
{n} #n
{n,} #(n,)

Unicode characters in XSD patterns are directly translated but the syntax changes from s#xgpre; in XSD t0 \q{g, p,
r, <} in TTCN-3, where g, p, r, and c each represent a single character.

Escaped characters in XSD shall be mapped to the appropriate character in TTCN-3 (e.g. ".", and "+") or, if this
character has a meta-character meaning in TTCN-3 patterns, to an escaped character in TTCN-3. The double quote
character must be mapped to a pair of double quote characters in TTCN-3. Character categories and blocks (like \p{ru}
Or \p{IsBasicLatin}) are not supported. The mapping shall result in a valid TTCN-3 pattern according to clause B.1.5
of ES 201 873-1 [1].

EXAMPLE:

<simpleType name="e6">
<restriction base="string"s>
<pattern value=" (aUser|anotherUser)@(i|I)nstitute"/>
</restrictions>
</simpleType>

//Will be mapped to the following TTCN-3 expresion:

type XSD.String E6 (pattern " (aUser|anotherUser)@(i|I)nstitute")
with {

variant "name as uncapitalized"
}

ETSI

22 ETSI ES 201 873-9 V4.1.1 (2009-06)

6.1.5 Enumeration
The facet enumeration constraints the value space to a specified set of values for a type.

An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by restriction (directly
or indirectly) from xsd:string shall be mapped to enumeration values of a TTCN-3 enumerated type (see clause 6.2.4 of
ES 201 873-1 [1]) as specified in the three items below:

a) For each member of the value of the enumeration facet, an enumeration item that is an identifier (i.e. without
associated integer value) shall be added to the enumerated type, except for members not satisfying a relevant
length, minLength, maxLength, pattern facet or a whiteSpace facet with a value of replace or collapse and the
member name contain any of the characters HORIZONTAL TABULATION, NEWLINE or CARRIAGE
RETURN, or (in the case of collapse) contain leading, trailing, or multiple consecutive SPACE characters.

b) Each enumeration identifier shall be generated by applying the rules defined in clause 5.2.2 of the present
document to the corresponding member of the value of the enumeration facet.

¢) The members of the value of the enumeration facet shall be mapped in ascending lexicographical order and any
duplicate members shall be discarded.

An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by restriction (directly
or indirectly) from the XSD integer shall be mapped to enumeration values of a TTCN-3 enumerated type

(see clause 6.2.4 of ES 201 873-1 [1]) as specified in the three items below. In this case the enumeration names are
artificial and the encoded XML component shall contain the integer values, not the TTCN-3 enumeration names. The
encoder shall be instructed to do so with the variant attribute “use number".

a) For each member of the value of the enumeration facet, an enumeration item that is an enumeration identifier
plus the associated integer value shall be added to the enumeration type, except for members not satisfying a
relevant length, minLength, maxLength, pattern facet or a whiteSpace facet with a value of replace or collapse
and the member name contain any of the characters HORIZONTAL TABULATION, NEWLINE or
CARRIAGE RETURN, or (in the case of collapse) contain leading, trailing, or multiple consecutive SPACE
characters.

b) The identifier of each enumeration item shall be generated by concatenating the character string "int" with the
canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of the corresponding member of the
value of the enumeration facet. The assigned integer value shall be the TTCN-3 integer value notation for the
member.

¢) The members of the value of the enumeration facet shall be mapped in ascending numerical order and any
duplicate members shall be discarded.

Any other enumeration facet shall be mapped to value list subtyping, if this is allowed by ES 201 873-1 [1], that is
either a single value or a union of single values corresponding to the members of the value of the enumeration. If a
corresponding value list subtyping is not allowed by ES 201 873-1 [1], the enumeration facet shall be ignored.

NOTE: The enumeration facet applies to the value space of the base type definition. Therefore, for an
enumer ation of the XSD built-in datatypes QName, the value of the uri component of the use_gname
record (see clause 6.6.4) is determined, in the XML representation of an XSD Schema, by the hamespace
declarations whose scope includes the QName, and by the prefix (if any) of the QName.

EXAMPLE 1. The following represents a user-defined top-level simple type definition that is a restriction of
xsd:string with an enumeration facet.

<xsd:simpleType name="state">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="off"/>
<xsd:enumeration value="on"/>
</xsd:restriction>
</xsd:simpleType>

//Is mapped to the TTCN-3 type definition:
type enumerated State {off, on }
with {
variant "name as uncapitalized"
}

ETSI

23 ETSI ES 201 873-9 V4.1.1 (2009-06)

EXAMPLE 2: The following represents a user-defined top-level simple type definition that is a restriction of
xsd:integer with an enumeration facet.

<xsd:simpleType name="integer-0-5-10">
<xsd:restriction base="xsd:integer">
<xsd:enumeration value="0"/>
<xsd:enumeration value="5"/>
<xsd:enumeration value="10"/>
</xsd:restriction>
</xsd:simpleType

//Is mapped to the TTCN-3 type definition:
type enumerated Integer 0 5 10 {int0(0), int5(5), int10(10)}
with {

variant "name as uncapitalized";

variant "useNumber"

EXAMPLE 3: The following represents a user-defined top-level simple type definition that is a restriction of
xsd:integer with a minInclusive and a maxInclusive facet.

<xsd:simpleType name="integer-1-10">
<xsd:restriction base="xsd:integer"s>
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>

//Is mapped to the TTCN-3 type definition:
type integer Integer 1 10 (1..10)
with {
variant "name as uncapitalized"
}

EXAMPLE 4: The following represents a user-defined top-level simple type definition that is a restriction (with a
minExclusive facet) of another simple type definition, derived by restriction from xsd:integer with
the addition of a mininclusive and a maxInclusive facet.

<xsd:simpleType name="multiple-of-4">
<xsd:restrictions>
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:minExclusive value="5"/>
</xsd:restriction>
</xsd:simpleType>

//Is mapped to the TTCN-3 type definition:
type integer Multiple of 4 (1..4,6..10)
with {

variant "name as uncapitalized"
}

EXAMPLE 5: The following represents a user-defined top-level simple type definition that is a restriction (with a
minLength and a maxLength facet) of another simple type definition, derived by restriction from
xsd:string with the addition of an enumeration facet.

<xsd:simpleType name="colour"s>
<xsd:restrictions>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="white"/>
<xsd:enumeration value="black"/>
<xsd:enumeration value="red"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:minLength value="2"/>
<xsd:maxLength value="4"/>
xsd:restriction>
</xsd:simpleType>

//Is mapped to the TTCN-3 type definition:

ETSI

24 ETSI ES 201 873-9 V4.1.1 (2009-06)

type enumerated Color { red }
with {

variant "name as uncapitalized"
}

6.1.6 WhiteSpace

The whiteSpace facet has no corresponding feature in TTCN-3 but shall be preserved using the whitespace encoding
instruction.

EXAMPLE:

<simpleType name="e8">
<restriction base="string"s>
<whiteSpace value="replace"/>
</restriction>
</simpleType>

This can be mapped into a charstring, sending information about the whiteSpace facet to the codec.

type XSD.String E8

with {
variant "whiteSpace replace";
variant "name as uncapitalized"

}

For most built-in types the value of the whiteSpace facet shall be set to "collapse" and only for the string types
normalizedString (see clause 6.2.2), token (see clause 6.2.2), language (see clause 6.2.13), Name (see clause 6.2.4) and
NCName (see clause 6.2.6) are allowed to specify this facet.

6.1.7 MinInclusive

The mininclusive XSD facet is only valid for numerical types. It specifies the lowest bound for a number, including the
boundary. This is mapped to a range restriction in TTCN-3 with a given lower boundary and the upper boundary of the
base type (or infinity if not set).

EXAMPLE:

Mapping of elements of type integer with mininclusive facet:

<simpleType name="e9">
<restriction base="integer">

<minInclusive value="-5"/>
</restriction>
</simpleType>
//Is mapped to:
type XSD.Integer E9 (-5 .. infinity)
with {

variant "name as uncapitalized"

}

6.1.8 MaxInclusive

The maxinclusive facet is only valid for numerical types. It specifies the upmost bound for a number, including the
boundary. This is mapped to a range restriction in TTCN-3 with a given upper boundary and the lower boundary of the
base type (-infinity if not set).
EXAMPLE:
Mapping of elements of type integer with maxinclusive facet:
<simpleType name="el0">
<restriction base="positiveInteger"s
<maxInclusive value="100"/>

</restrictions>
</simpleType>

ETSI

25 ETSI ES 201 873-9 V4.1.1 (2009-06)

//Is mapped to:
type XSD.PositiveInteger E10 (1 .. 100)
with {
variant "name as uncapitalized"
}

6.1.9 MinExclusive

The XSD facet minExclusive is very similar to mininclusive (see clause 6.1.7) only the given bound is not part of the
range. A direct mapping of this is not possible in TTCN-3, as ranges are always including the given boundaries. To get
around this, a value delta needs to be defined which is the smallest possible number handled by the TTCN-3 compiler
for a given type (e.g. 1 for integer types and something very small for a double). The boundary shall then be modified
by adding the delta.

EXAMPLE: Considering the mapping result of the example in clause 6.1.7 a translation with minExclusive
facet would look like:

<simpleType name="e%a">
<restriction base="integer">

<minExclusive value="-5"/>
</restriction>
</simpleType>
type XSD.Integer E9a (-4 .. infinity)

with {
variant "name as uncapitalized"

(The original boundary of -5 has been modified by the addition of a delta of 1).

6.1.10 MaxExclusive

The XSD facet maxExclusive is very similar to maxinclusive (see clause 6.1.8) only the given bound is not part of the
range. A direct mapping of this is not possible in TTCN-3, as ranges are always including the given boundaries. To get
around this a value delta shall be defined which is the smallest possible number handled by the TTCN-3 compiler for a
given type (e.g. 1 for integer types and something very small for a doubl€). The boundary shall then be modified by
subtracting the delta.

EXAMPLE: Considering the mapping result of the example in clause 6.2.6 a translation with maxExclusive
facet would look like:

<simpleType name="elOa">
<restriction base="positiveInteger"s>
<maxExclusive value="100"/>
</restriction>
</simpleType>

// Is mapped to:
type XSD.PositiveInteger El0a (1 .. 99)
with {
variant "name as uncapitalized"
}

(The original boundary of 100 has been modified by the subtraction of a delta of 1).

6.1.11 Total digits

This facet defines the total number of digits a numeric value is allowed to have. It shall be mapped to TTCN-3 using
ranges by converting the value of totalDigits to the proper boundaries of the numeric type in question.

EXAMPLE:

<simpleType name="el3">
<restriction base="negativeInteger"s
<totalDigits value="3"/>
</restrictions>
</simpleType>

ETSI

26 ETSI ES 201 873-9 V4.1.1 (2009-06)

// Is translated to:
type XSD.NegativeInteger E13 (-999 .. -1)
with {
variant "name as uncapitalized"
1

6.2 String types

XSD string types shall generally be converted to TTCN-3 as subtypes of universal charstring or octetstring. For an
overview of the allowed facets please refer to table 2. Following clauses specify the mapping of all string types of XSD.

To support mapping, the following type definitions are added to the built-in data types (utf8string is declared as a
UTF-8 encoded subtype of universal charstring in clause D.2.2.0 of ES 201 873-1 [1]):

type utf8string XMLCompatibleString
(
char(0,0,0,9).. char(0,0,0,9),
char(0,0,0,10)..char(0,0,0,10),
char(0,0,0,12) ..char(0,0,0,12),
char(0,0,0,32) ..char(0,0,215,255),
char(0,0,224,0) ..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)
)i

type utf8string XMLStringWithNoWhitespace
(
char(0,0,0,33)..char(0,0,215,255),
char(0,0,224,0) ..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)

)i

type utf8string XMLStringWithNoCRLFHT
(
char(0,0,0,32)..char(0,0,215,255),
char(0,0,224,0)..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)
)i

6.2.1 String

The string type shall be translated to TTCN-3 as an XML compatible restriction of the universal charstring:
type XSD.XMLCompatibleString String

with {
variant "XSD:string"
}

6.2.2 Normalized string

The normalizedString type shall be translated to TTCN-3 using the following XML compatible restricted subtype of the
universal charstring:

type XSD.XMLStringWithNoCRLFHT NormalizedString

with {
variant "XSD:normalizedString"
}

6.2.3 Token

The token type shall be translated to TTCN-3 using the built-in data type NormalizedString:
type XSD.NormalizedString Token

with {
variant "XSD:token"
}

ETSI

27 ETSI ES 201 873-9 V4.1.1 (2009-06)

6.2.4 Name

The Name type shall be translated to TTCN-3 using the following XML compatible restricted subtype of the universal
charstring:

type XSD.XMLStringWithNoWhitespace Name

with {
variant "XSD:Name"

6.2.5 NMTOKEN

The NMTOKEN type shall be translated to TTCN-3 using the following XML compatible restricted subtype of the
universal charstring:

type XSD.XMLStringWithNoWhitespace NMTOKEN

with {
variant "XSD:NMTOKEN"

6.2.6 NCName

The NCName type shall be translated to TTCN-3 using the built-in data type Name:

type XSD.Name NCName
with {

variant "XSD:NCName"
}

6.2.7 ID

The 1D type shall be translated to TTCN-3 using the built-in data type NCName:

type XSD.NCName ID
with {

variant "XSD:ID"
}

6.2.8 IDREF

The IDREF type shall be translated to TTCN-3 using the built-in data type NCName:

type XSD.NCName IDREF
with {

variant "XSD:IDREF"
}

6.2.9 ENTITY

The ENTITY type shall be translated to TTCN-3 using the built-in data type NCName:

type XSD.NCName ENTITY
with {

variant "XSD:ENTITY"
i

6.2.10 Hexadecimal binary

The hexBinary type shall be translated to TTCN-3 using a plain octetstring:

type octetstring HexBinary
with {
variant "XSD:hexBinary"

No pattern shall be specified for hexBinary types.

ETSI

28 ETSI ES 201 873-9 V4.1.1 (2009-06)

6.2.11 Base 64 binary

The XSD base64Binary type shall be translated to an octetstring in TTCN-3. When encoding elements of this type, the
XML codec will invoke automatically an appropriate base64 encoder; when decoding XML instance content, the
base64 decoder will be called.

The base64Binary type shall be mapped to the TTCN-3 type:
type octetstring Baseé4Binary
with {
variant "XSD:base64Binary"
}
EXAMPLE:
<simpleType name="E14">
<restriction base="base64Binary"/>
</simpleType>
//Is translated as:
type XSD.Baseé64Binary E14;
// and the template:
template E14 MyBase64BinaryTemplate := '546974616E52756C6573'0

// Is encoded as:

<E14>VGl0YW5SAWxlcw==\r\n</E14>

6.2.12 Any URI

The anyURI type shall be translated to TTCN-3 as an XML compatible restricted subtype of the universal charstring:

type XSD.XMLStringWithNoCRLFHT AnyURI
with {

variant "XSD:anyURI"
}

6.2.13 Language

The language type shall be translated to the TTCN-3 type:

type charstring Language (pattern "[a-zA-Z]#(1,8) (-\w#(1,8))#(0,)")
with {

variant "XSD:language"
}

6.2.14 NOTATION

The XSD NOTATION type shall not be translated to TTCN-3.

6.3 Integer types

XSD integer types shall generally be converted to TTCN-3 as subtypes of integer-based types. For an overview of the
allowed facets please refer to table 2. Following clauses specify the mapping of all integer types of XSD.

6.3.1 Integer

The integer type is not range-restricted in XSD and shall be translated to TTCN-3 as a plain integer:
type integer Integer

with {
variant "XSD:integer"

ETSI

29 ETSI ES 201 873-9 V4.1.1 (2009-06)

6.3.2 Positive integer

The positivel nteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer PositiveInteger (1 .. infinity)
with { variant "XSD:positiveInteger"};

6.3.3 Non-positive integer

The nonPositivelnteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer NonPositiveInteger (-infinity .. 0)
with {
variant "XSD:nonPositiveInteger"

6.3.4 Negative integer

The negativelnteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer Negativelnteger (-infinity .. -1) with {
variant "XSD:negativeInteger"
i

6.3.5 Non-negative integer

The nonNegativel nteger type shall be translated to TTCN-3 as the range-restricted integer:

type integer NonNegativeInteger (0 .. infinity)
with {
variant "XSD:nonNegativeInteger"
}
6.3.6 Long

The long type is 64bit based in XSD and shall be translated to TTCN-3 as a plain longlong as defined in clause D.2.1.3
of ES 201 873-1 [1]:

type longlong Long

with {
variant "XSD:long"
}

6.3.7 Unsigned long

The unsignedLong type is 64bit based in XSD and shall be translated to TTCN-3 as a plain unsignedlonglong as defined
in clause D.2.1.3 of ES 201 873-1 [1]:

type unsignedlonglong UnsignedLong

with {
variant "XSD:unsignedLong"
}

6.3.8 Int

The int type is 32bit based in XSD and shall be translated to TTCN-3 as a plain long as defined in clause D.2.1.2 of
ES 201 873-1 [1]):

type long Int
with {

variant "XSD:int"
}

ETSI

30 ETSI ES 201 873-9 V4.1.1 (2009-06)

6.3.9 Unsigned int

The unsignedint type is 32bit based in XSD and shall be translated to TTCN-3 as a plain unsignedliong as defined in
clause D.2.1.2 of ES 201 873-1 [1]:

type unsignedlong UnsignedInt
with {

variant "XSD:unsignedInt"
}

6.3.10 Short

The short type is 16bit based in XSD and shall be translated to TTCN-3 as a plain short as defined in clause D.2.1.1 of
ES 201 873-1 [1]:
type short Short

with {
variant "XSD:short"
}

6.3.11 Unsigned Short

The unsignedShort type is 16bit based in XSD and shall be translated to TTCN-3 as a plain unsignedshort as defined in
clause D.2.1.1 of ES 201 873-1 [1]:

type unsignedshort UnsignedShort

with {
variant "XSD:unsignedShort"
}

6.3.12 Byte

The byte type is 8bit based in XSD and shall be translated to TTCN-3 as a plain byte as defined in clause D.2.1.0 of
ES 201 873-1 [1]:

type byte Byte

with {
variant "XSD:byte"
}

6.3.13 Unsigned byte

The unsignedByte type is 8bit based in XSD and shall be translated to TTCN-3 as a plain unsignedbyte as defined in
clause D.2.1.0 of ES 201 873-1 [1]:

type unsignedbyte UnsignedByte
with {

variant "XSD:unsignedByte"
}

6.4 Float types

XSD float types are generally converted to TTCN-3 as subtypes of float. For an overview of the allowed facets refer to
table 2 in clause 6.1. Following clauses specify the mapping of all float types of XSD.

6.4.1 Decimal

The decimal type shall be translated to TTCN-3 as a plain float:
type float Decimal

with {
variant "XSD:decimal"
}

ETSI

31 ETSI ES 201 873-9 V4.1.1 (2009-06)

6.4.2 Float

The float type shall be translated to TTCN-3 as an |EEE754float as defined in clause D.2.1.4 of ES 201 873-1 [1]:

type IEEE754float Float
with { variant "XSD:float"};

6.4.3 Double

The double type shall be translated to TTCN-3 as an IEEE754double as defined in clause D.2.1.4 of ES 201 873-1 [1]:

type IEEE754double Double
with {

variant "XSD:double"
1

6.5 Time types

XSD time types shall generally be converted to TTCN-3 as pattern restricted subtypes of charstring. For an overview of
the allowed facets refer to table 2. Details on the mapping of all time types of XSD are given in the following.

For the definition of XSD time types, the supplementary definitions below are used. These definitions are part of the
module XSD (see annex A). As a consequence, in case of both implicit and explicit mappings, it shall be possible to use
their identifiers in other (user defined) modules but also, it shall be possible to reference these definitions by using their
qualified names (e.g. XSD.year).

const charstring

dash := "-",
cln = WM,
year := "(0(0(0[1-9]][1-9]11[0-9])|[1-9][0-9][0-91)]|[1-9]1[0-9]([0-9]([0-9])"
yearExpansion := "(([1-91 [0-91# (0,) #(, 1)) #(, 1),
month := "(0[1-9]|1[0-2])"
dayOfMonth := " (0[1-9]|[12][0-9]|3([01])"
hour := "([01] [0-9]|2[0-3])",
minute := " ([0-5][0-9])",
second := " ([0-5][0-9])",
sFraction := " (.[0-91#(1,))#(,1)",
endOfDayExt := "24:00:00(.0#(1,))#(,1)",
nums := "[0-91#(1,)"
ZorTimeZoneExt := " (Z| [\+\-]((0[0-9]|1[0-3]):[0-5][0-9]|14:00))#(,1)"
durTime := "(T[0-91#(1,)"&
"(H([0-91#(1,) (M([0-9] s| . (1,)8))#(,1)|.[0-91#(1,)s|s))#(,1)|" &
"M([0-9]1#(1,) (S].[0- 9]#(1 s)|. [o 9]#(1 M) #(,1) |"&
ns|n&
".[0-9]1#(1,)S))"

NOTE 1: The patterns below implement the syntactical restrictions of 1SO 8601 [i.2] and XSD (e.g. year 0000,
month 00 or 13, day 00 or 32 are disallowed) but the semantical restrictions of XSD (e.g. 2001-02-29 is a
non existing date as 2001 is not a leap year) are not imposed.

NOTE 2: The patterns in the subsequent clauses, i.e. the text between the double quotes, need to be one continuous
string without whitespace when being used in a TTCN-3 code. The lines below are cut for pure editorial
reasons, to fit the text to the standard page size of the present document.

6.5.1 Duration

The duration type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Duration (pattern

.."{dash}#(,1)P ({nums}(Y({nums}(M({nums}D{durTime}# 1) |{durTime}#(,l))|D{durTime}#(,l))|" &
"{durTime}#(,1)) |M({nums}D{durTime}#(,l)|{durTime}#() |ID{durTime}#(,1)) | {durTime}) "
)

with {

variant "XSD:duration"

}

ETSI

32 ETSI ES 201 873-9 V4.1.1 (2009-06)

6.5.2 Date and time

The dateTime type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring DateTime (pattern
.."{yearExpansion}{year}{dash}{month}{dash}{dayOfMonth}T ({hour}{cln}{minute}{cln}{second}" &
"{sFraction} | {endOfDayExt}) { ZorTimeZoneExt }"
)
with {
variant "XSD:dateTime"
}

6.5.3 Time

The time type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Time (pattern
.."({hour}{cln}{minute}{cln}{second}{sFraction} | {endOfDayExt}) { ZorTimeZoneExt }"
)
with {
variant "XSD:time"
!

6.5.4 Date

The date type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring Date (pattern
.."{yearExpansion}{year}{dash}{month}{dash}{dayOfMonth} {ZorTimeZoneExt }"
)
with {
variant "XSD:date"
}

6.5.5 Gregorian year and month

The gYearMonth type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GYearMonth (pattern
.."{yearExpansion}{year}{dash}{month}{ZorTimeZoneExt}"
)
with {
variant "XSD:gYearMonth"
}

6.5.6 Gregorian year

The gYear type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GYear (pattern
"{yearExpansion}{year}{ZorTimeZoneExt }"
)
with {
variant "XSD:gYear"
1

6.5.7 Gregorian month and day

The gMonthDay type shall be translated to TTCN-3 using the following pattern-restricted charstring:

type charstring GMonthDay (pattern
"{dash}{dash}{month}{dash}{dayOfMonth} {ZorTimeZoneExt}"
)
with {
variant "XSD:gMonthDay"
}

ETSI

33 ETSI ES 201 873-9 V4.1.1 (2009-06)

6.5.8 Gregorian day

The gDay type shall be translated to TTCN-3 using the following pattern-restricted charstring:
type charstring GDay (pattern
"{dash}{dash}{dash}{dayOfMonth}{ZorTimeZoneExt }"
)
with {
variant "XSD:gDay"
}

6.5.9 Gregorian month

The gMonth type shall be translated to TTCN-3 using the following pattern-restricted charstring:
type charstring GMonth (pattern
"{dash}{dash}{month} {ZorTimeZoneExt }"
)
with {
variant "XSD:gMonth"
1

6.6 Sequence types

XSD sequence types shall generally be converted to TTCN-3 as a record of their respective base types. For an overview
of the allowed facets refer to table 2. Following clauses specify the mapping of all sequence types of XSD.

6.6.1 NMTOKENS

The XSD NMTOKENS type shall be mapped to TTCN-3 using a record of construct of type NMTOKEN:
type record of XSD.NMTOKEN NMTOKENS

with {
variant "XSD:NMTOKENS"
}

6.6.2 IDREFS

The XSD IDREFStype shall be mapped to TTCN-3 using a record of construct of type IDREF:

type record of IDREF IDREFS
with { variant "XSD:IDREFS" };

6.6.3 ENTITIES

The XSD ENTITIEStype shall be mapped to TTCN-3 using a record of construct of type ENTITY:
type record of ENTITY ENTITIES

with {
variant "XSD:ENTITIES"

6.6.4 QName

The XSD QName type shall be translated to the TTCN-3 type QName as given below:

type record QName {
AnyURI uri optional,
NCName name

with {
variant "XSD:QName"
1

ETSI

34 ETSI ES 201 873-9 V4.1.1 (2009-06)

When encoding an element of type QName (or derived from QName), if the encoder detects the presence of an URI and
this is different from the target namespace, the following encoding shall result (the assumed target namespace is
http://www.example.org/).

EXAMPLE:

type record El4a

QName name,
integer refId

}

template Eld4a t_Elda:=

{

name: ={
uri:="http://www.organization.org/",
name: ="someName"

refId:=10

}

<?xml version="1.0" encoding="UTF-8"7?>

<El4a xmlns="http://www.example.org/">

<name xmlns:ns="http://www.organization.org/">ns:someName</name>
<refId>10</refId>

</Eld4a>

6.7 Boolean type

The XSD boolean type shall be mapped to the TTCN-3 boolean type:

type boolean Boolean
with {

variant "XSD:boolean"
}

During translation of XSD boolean values it is necessary to handle all four encodings that XSD allows for booleans

("true", "fa1se", "0", and "1"); This shall be realized by using the "text" encoding instruction:

type XSD.Boolean MyBooleanType
with {
variant "text 'true' as '1'";
variant "text 'false' as '0'"

}

6.8 AnyType and anySimpleType types

The XSD anySmpleType can be considered as the base type of all primitive data types, while the XSD anyType is the
base type of all complex definitions and the anySimpleType.

The anySmpleType shall be translated as an XML compatible restricted subtype of the universal charstring.

EXAMPLE:

type XSD.XMLCompatibleString AnySimpleType
with {

variant "XSD:anySimpleType"
}

//while anyType is translated into XML content opagque to the codec:

type record AnyType {
record of XSD.String attr,
record of XSD.String elem list

with {
variant "XSD:anyType";
variant (attr) "anyAttributes";
variant (elem_list) "anyElement";

ETSI

http://www.example.org/

See also clause 7.7.

35

ETSI ES 201 873-9 V4.1.1 (2009-06)

2

Mapping XSD components

After mapping the basic layer of XML Schema (i.e. the built-in types) a mapping of the structures shall follow. Every
structure that may appear, globally or not, shall have a corresponding mapping to TTCN-3.

7.1

Attributes of XSD component declarations

Tables 5 and 6 contain an overview about the major attributes that shall be encountered during mapping is the tables are
incomplete, the special attributes that are only used by a single XSD component are described in the corresponding
clauses. Tables 5 and 6 show which attributes shall be evaluated when converting to TTCN-3, depending on the XSD
component to be translated.

Table 5: Attributes of XSD component declaration #1

components element |attribute sitmple complex [simple |complex group
attributes ype type |content |content
id v v v v v v v
final v v v
name v v v v v
maxOccurs 4 v
(see note 1)
minOccurs v
(see note 1)
ref v v v
abstract v v
block v v
default v v
fixed v v
form v v
type v v
mixed v v
nillable v
use v
substitutionGroup v
(see note 2)
NOTE 1: Can be used in locally defined components only.
NOTE 2: Can be used in globally defined components only.
Table 6: Attributes of XSD component declaration #2
omponents
all choice |[sequence | attribute |annotation |restriction list union |extension
attributes Group
id v v v v v v v v v
name v
maxOccurs v v v
minOccurs v v v
ref v

It is also necessary to consider default values for attributes coming from the original definitions of the XSD components
(e.g. minOccurs s set to 1 for element components by default) when translating.

ETSI

36 ETSI ES 201 873-9 V4.1.1 (2009-06)

7.1.1 Id

The attribute id enables a unique identification of an XSD component. They shall be mapped to TTCN-3 as simple type
references, e.g. any component mapping to a type with name typeName and an attribute id="I1D" shall result in an
additional TTCN-3 type declaration:

type <Typename> ID;

7.1.2 Ref

The ref attribute may reference an id or a schema component in XSD. The ref attribute is not translated on its own but
the local element, attribute, attributeGroup or group references is mapped as specified in the appropriate clauses of the
present document.

7.1.3

The XSD attribute name holds the specified name for an XSD component. A component without this attribute shall
either be defined anonymously or given by a reference (see clause 7.1.2). Names shall directly be mapped to TTCN-3
identifiers; please refer to clause 5.2.2 on constraints and properties of this conversion.

Name

7.1.4

The minOccurs and maxOccurs XSD attributes provide for the number of times an XSD component can appear in a
context. In case of mapping locally defined XSD elements, choice and sequence compositors, this clause is invoked by
clauses 7.3, 7.6.5 and 7.6.6.6 respectively. In case of the all compositor, mapping of the minOccurs and maxOccurs
attributes are completely specified in clause 7.6.4.

MinOccurs and maxOccurs

In the general case, when both the minOccurs and maxOccurs attribute equal to 1" (either explicitly or by defaulting to
"1"), they shall be ignored, i.e. are not mapped to TTCN-3.

When the minOccurs attribute equals to 0" and the maxOccurs attribute equals to "1™ (either explicitly or by defaulting
to "1"), the TTCN-3 field resulted by mapping the respective XSD component shall be set to optional.

In all other cases, the type of the related TTCN-3 type or field shall be setto record of, where the replicated inner
type is the TTCN-3 type that would be the type of the field in the general case above. The record of shall be
unrestricted if minOccurs equals to 0" and maxOccurs equals to "unbounded™ and shall be length restricted otherwise
(where maxOccurs="unbounded" shall be translated to the upper bound infinity). The initial name of the field shall
be postfixed with ™ _list". Finally, if no "untagged" encoding instruction is attached to the TTCN-3 field being
processed, a "name as "<initial name>"" encoding instruction shall be attached to the field, where <initial name> is the
name resulted by applying clause 5.2.2 to the name of the XSD component being translated.

NOTE 1: The effect of the "name as ..." encoding instruction is, that each repetition of the given element in an
encoded XML document will be tagged with the specified name. Thus, in this case the instruction has
effect on the elements of the TTCN-3 record of field and not on the field itself.

NOTE 2: Please note, that TTCN-3 constructs corresponding to anonymous XSD types always have the "untagged"
encoding instruction attached before this clause is invoked.

Table 7: Summary of mapping the minOccurs and maxOccurs attributes

minOccurs maxOccurs TTCN-3 mapping
TTCN-3 construct preserved f'?ld
name postfix
0 0
0 1 or not present optional
1 or not present 1 or not present <the TTCN-3 element is mandatory>
0 unbounded record of <initial type> _list
1 h (<X>..<y>) of .
<x>#0 <y>#1 record. ‘.anfst (y>) o _list
<initial type>
1 h (<x>..infini £ .
<x>21 unbounded record engt .(infinity)o _list
<initial type>

ETSI

37 ETSI ES 201 873-9 V4.1.1 (2009-06)

EXAMPLE 1: Mapping of an optional element.

<complexType name="el5a">
<sequence>
<element name="foo" type="integer" minOccurs="0"/>
<element name="bar" type="float"/>
</sequence>
</complexType>

// Is translated to an optional field as:
type record E15 {

XSD.Integer foo optional,
XSD.Float Dbar

with {
variant "name as uncapitalized"
}
EXAMPLE 2: Mapping of elements allowing multiple recurrences.
<!-- The unrestricted case: -->
<complexType name="el5b">
<sequence>
<element name="foo" type="integer" minOccurs="0" maxOccurs="unbounded"/>
<element name="bar" type="float"/>
</sequence>
</complexType>

// Is translated to TTCN-3 as:

type record E15b {
record of XSD.Integer foo list,
XSD.Float bar

with {
variant "name as uncapitalized";
variant (foo_list) "name as 'foo'"

}
<!-- The length restricted case: -->
<complexType name="el5c">
<sequence>
<element name="foo" type="integer" minOccurs="5" maxOccurs="10"/>
<element name="bar" type="float"/>
<sequence>
</complexType>

// Is translated to TTCN-3 as:

type record El5c {
record length(5..10) of XSD.Integer foo list,
XSD.Float bar

with {
variant "name as uncapitalized ";
variant (foo list) "name as 'foo'"

7.1.5 Default and Fixed

The XSD default attribute assigns a default value to a component in cases where it is missing in the XML data.

The XSD fixed attribute gives a fixed constant value to a component according to the given type, so in some XML data
the value of the component may be omitted. The XSD fixed attribute can also be applied to XSD facets, preventing a
derivation of that type from modifying the value of the fixed facets.

As default has no equivalent in TTCN-3 space, it shall be mapped to a "defaultForEmpty ..." encoding instruction. The
fixed attribute applied to attribute or element elements shall be mapped to a subtype definition with the single allowed
value identical to the value of the fixed attribute plus a "defaultForEmpty ..." encoding instruction identifying the value
of the fixed attribute as well. The fixed attribute applied to XSD facets shall be ignored.

ETSI

38 ETSI ES 201 873-9 V4.1.1 (2009-06)

EXAMPLE:

<element name="elementDefault" type="string" default="defaultValue"/>
<element name="elementFixed" type="string" fixed="fixedValue"/>

// Is be translated to:

type XSD.String ElementDefault

with {
variant "element";
variant "defaultForEmpty as 'defaultValue'";
variant "name as uncapitalized";

}
type XSD.String ElementFixed ("fixedvalue")
with {
variant "element";
variant "defaultForEmpty as 'fixedvalue'";
variant "name as uncapitalized"
}
7.1.6 Form

Mapping of the XSD form attribute is not supported by the present document. The values of the form attributes shall be
preserved in the "form as..." encoding instructions as specified below:

a) Ifthe value of the formattribute is qualified and the attributeFormQualified encoding instruction is attached to
the TTCN-3 module the given XSD declaration contributes to, or the value of the form attribute is unqualified
and no attributeFormQualified encoding instruction is assigned to the corresponding TTCN-3 module, the
formattribute shall be ignored.

b) If the value of a formattribute of an XSD attribute declaration is qualified and no attributeFormQualified
encoding instruction is attached to the target TTCN-3 module, or the value of a form attribute of an element
declaration is qualified and no elementFormQualified encoding instruction is attached to the target TTCN-3
module, a "form as qualified™ encoding instruction shall be attached to the TTCN-3 field resulted
from mapping the given XSD attribute or element declaration.

c) Ifthe value of a formattribute of an XSD attribute declaration is unqualified and the attributeFormQualified
encoding instruction is attached to the target TTCN-3 module, or the value of a formattribute of an element
declaration is unqualified and the elementFormQualified encoding instruction is attached to the target TTCN-3
module, a "form as unqualified™ encoding instruction shall be attached to the TTCN-3 field resulted
from mapping the given XSD attribute or element declaration.

NOTE: An XSD declaration may contribute to more than one TTCN-3 module (see clause 5.1), therefore in case
of a given XSD declaration item a) and b) or ¢) above may apply at the same time.

Table 8 below summarizes the mapping of the attributeFormDefault, elementFormDefault (see also clause 5.1) and
form XSD attributes.

ETSI

39

ETSI ES 201 873-9 V4.1.1 (2009-06)

Table 8: Summary of mapping of the form XSD attribute

ag?r:necs(?;cne attributeFormQualified and/or
instructiong elementFormQualified encoding
attached to the instructions attached to the
target target TTCN-3 module
TTCN-3 module absent present
any value form any value or absent "form as..." N/A
or absent |attribute absent absent (see note)
"form as..." "form as
absent present absent unqualified"
. unqualified | form - "form as..." "form as
attrlbutzrljg/r(r)r;Default or absent |attribute unqualified present absent unqualified”
elementFormDefault qualified present form as" form as...
in the ancestor qualified absent
schema element absent present N/A form as...
(see note) absent
- form . N/A "form as
qualified attribute unqualified present (see note) unqualified”
. N/A "form as..."
qualified present (see note) absent
NOTE: Excluded by the mapping of attributeFormDefault and elementFormDefault in clause 5.1.
7.1.7 Type

The XSD type attribute holds the type information of the XSD component. The value is a reference to the global
definition of simpleType, complexType or built-in type. If type is not given, the component must define either an
anonymous (inner) type, or contain a reference attribute (see clause 7.1.2), or use the XSD ur-type definition.

7.1.8 Mixed

The mixed content attribute allows inserting text between the elements of XSD complex type or element definitions. Its

translation is defined in clause 7.6.8.

7.1.9 Abstract

Mapping of the XSD abstract attribute is not supported by the present document.

7.1.10 Block and final

Mapping of the XSD block and final attributes are not supported by the present document.

7.1.11 Nillable

If the nillable attribute of an element declaration is set to "true", then an element may also be valid if it carries the
namespace qualified attribute with (local) name nil from the namespace "http://www.w3.0rg/2001/XMLSchema-
instance" and the value "true" (instead of a value of its type).

A nillable XSD element shall be mapped to a TTCN-3 recoxrd type (in case of global elements) or field (in case of
local elements), with the name resulted by applying clause 5.2.2 to the name of the corresponding element. The

record type or field shall contain one optional field with the name “content” and its type shall be the TTCN-3 type
of the element if the value of the nillable attribute would be "false”. The recorad type or field shall be appended with

the "useNil™ encoding instruction.

EXAMPLE 1:

Mapping of nillable elements.

<element name="remarkNillable" type="string" nillable="true"/>

<complexType name="elé6c">
<sequence>

ETSI

40

<element name="foo" type="integer"/>
<element name="bar" type="string" nillable="true"/>
</sequence>
</complexType>

//Are translated to TTCN-3 as:
type record RemarkNillable {
XSD.String content optional

with {
variant "name as uncapitalized";
variant "element";
variant "useNil"

}

type record Eléc {
XSD.Integer foo,
record {
XSD.String content optional
} bar

with {
variant "name as uncapitalized";
variant (bar) "useNil"

}

// Which allows e.g. the following encoding:
template El6a t_El6a :=
{

foo:=3,

bar:= { content := omit }

}

<?xml version="1.0" encoding="UTF-8"?>
<eléa>
<foo>3</foo>
<bar xsi:nil="true"/>
</el6a>

EXAMPLE 2: Joint use of the nillable, minOccurs and maxOccurs attributes.

<element name="SegNillable" nillable="true">
<complexType>
<sequence>

<element name="forename" type="string" nillable="true"/>

ETSI ES 201 873-9 V4.1.1 (2009-06)

<element name="surname" type="string" minOccurs="0" nillable="true"/>
<element name="bornPlace" type="string" minOccurs="0" maxOccurs="unbounded"

nillable="true"/>

<element ref="ns:remarkNillable"/>
</sequence>
</complexType>
</element>

//Is translated to TTCN-3 as:
type record SegNillable {
record {
record {
XSD.String content optional
} forename,
record {
XSD.String content optional
} surname optionmal,
record of record {
XSD.String content optional
} bornPlace list,
record {
XSD.String content optional
} remarkNillable
} content optional

with {
variant "element";
variant "useNil";
variant (content .bornPlace_list) "name as'bornPlace'";

variant (content.forename, content.surname, content.bornPlace list,

"useNil"

ETSI

content .remarkNillable)

41 ETSI ES 201 873-9 V4.1.1 (2009-06)

7.1.12 Use

XSD local attribute declarations and references may contain also the special attribute use. The use attribute specifies the
presence of the attribute in an XML value. The values of this attribute are: optional, prohibited and required with the
default value optional. If the use attribute is missing or its value is optional in an XSD attribute declaration, the
TTCN-3 field resulted by the mapping of the corresponding attribute shall be optional. If the value of the use
attribute is required, the TTCN-3 field corresponding to the XSD attribute shall be mandatory (i.e. without
optional). XSD attributes with the value of the use attribute prohibited shall not be translated to TTCN-3 (for an
example see clause 7.6.2.2).

EXAMPLE: Mapping of the use attribute

<xsd:complexType name="el7a">
<xsd:sequence>
</xsd:sequences>
<xsd:attribute name="foolLocal" type="xsd:float" use="required" />
<xsd:attribute name="barLocall" type="xsd:string" />
<xsd:attribute name="barLocal2" type="xsd:string" use="optional" />
<xsd:attribute name="dingLocal" type="xsd:integer" use="prohibited" />
</xsd:complexType>

//is translated to TTCN-3 as:

type record El7a {
XSD.String barLocall optional,
XSD.String barLocal2 optional,
XSD.Float fooLocal,

with {
variant "name as uncapitalized ";
variant (barLocall, barLocal2, fooLocal) "attribute"

7.1.13 Substitution group

Mapping of the XSD substitutionGroup attribute is not supported by the present document, i.e. this attribute shall be
ignored when the element is translated to TTCN-3.

NOTE: TTCN-3 supports this XSD feature via type compatibility, unless the substitution element is derived by
extending the head element.

7.2 Schema component

The schema element information items are not directly translated to TTCN-3 but the content(s) of schema element
information item(s) with the same target namespace (including absence of the target namespace) are mapped to
definitions of a target TTCN-3 module. See more details in clause 5.1.

7.3 Element component

An XSD element component defines a new XML element. Elements may be global (as a child of either schema or
redefine), in which case they are obliged to contain a name attribute or may be defined locally (as a child of all, choice
or sequence) using a name or ref attribute.

Globally defined XSD elements shall be mapped to TTCN-3 type definitions. In the general case, when the nillable
attribute of the element is "false” (either explicitly or by defaulting to "false™), the type of the TTCN-3 type definition
shall be one of the following:

. In case of XSD datatypes, and simple types defined locally as child of the element, the type of the XSD
element mapped to TTCN-3.

. In case of referenced XSD user types, the TTCN-3 type generated for the referenced XSD type.

. In case the child of the element is a locally defined complexType, it shall be a TTCN-3 record.

ETSI

42 ETSI ES 201 873-9 V4.1.1 (2009-06)

The name of the TTCN-3 type definition shall be the result of applying clause 5.2.2 to the name of the XSD element.
When nillable attribute is "true™, the procedures in clause 7.1.11 shall be invoked. The encoding instruction “element”
shall be appended to the TTCN-3 type definition resulted by mapping of a global XSD element.

EXAMPLE 1: Mapping of a globally defined element.

<element name="elé6a" type="typename"/>

// is translated to:
type typename Elé6a
with {
variant "element";
ariant "name as uncapitalized "

}

Locally defined elements shall be mapped to fields of the enframing type or structured type field. In the general case,
when both the minOccurs and maxOccurs attribute equal to 1" (either explicitly or by defaulting to "1") and the
nillable attribute of the element is "false" (either explicitly or by defaulting to "false"), the type of the field shall be the
type resulted by mapping the type of the XSD element and the name of the field shall be the result of applying

clause 5.2.2 to the name of the XSD element.

When either the minOccurs or the maxOccurs attributes or both differ from "1", the procedures in clause 7.1.4 shall be
invoked.

When the nillable attribute is "true™, the procedures in clause 7.1.11 shall be invoked.

EXAMPLE 2: Mapping of locally defined elements, general case (see further examples in clauses 7.1.4 and
7.1.11).

<complexType name="el6b">
<sequence>
<element name="foo" type="integer"/>
<element name="bar" type="string"/>
</sequence>
</complexType>

//Is translated into:
type record El6b

XSD.Integer foo,
XSD.String bar

with {
variant "name as uncapitalized"

7.4 Attribute and attribute group definitions

7.4.1 Attribute element definitions

Attribute elements define valid qualifiers for XML data and are used when defining complex types. Just like XSD
elements, attributes can be defined globally (as a child of schema or redefine) and then be referenced from other
definitions or defined locally (as a child of complexType, restriction, extension or attributeGroup) without the
possibility of being used outside of their context.

Global attributes shall be mapped in the same way as elements (see clause 7.3), except that they shall additionally be
appended with the “attribute” TTCN-3 encoding instruction (instead of the "element” instruction attached to TTCN-3
types resulted by mapping of elements).

EXAMPLE: Mapping of a globally defined attribute.

<attribute name="el7" type="typename"/>

// is mapped to:
type typename E17
with {
variant "attribute";
variant "name as uncapitalized "

ETSI

43 ETSI ES 201 873-9 V4.1.1 (2009-06)

}

For the mapping of locally defined attributes please refer to clause 7.6.7.

7.4.2 Attribute group definitions

An XSD attributeGroup defines a group of attributes that can be included together into other definitions by referencing
the attributeGroup. As children attribute elements of attributeGroup definitions are directly mapped to the TTCN-3
record types corresponding to the complexType referencing the attributeGroup, attributeGroup-s are not mapped to
TTCN-3. See also clauses 7.6.1 and 7.6.7.

7.5 SimpleType components

XSD simple types may be defined globally (as child of schema and using a mandatory name attribute) or locally (as a
child of element, attribute, restriction, list Of union) in a named or anonymous fashion. The simpleType
components are used to define new simple types by three means:

. Restricting a built-in type (with the exception of anyType, anySimpleType) by applying a facet to it.
. Building lists.
. Building unions of other simple types.

These means are quite different in their translation to TTCN-3 and are explained in the following clauses. For the
translation of attributes for simple types please refer to the general mappings defined in clause 7.1. Please note that an
XSD simpleType is not allowed to contain elements or attributes, redefinition of these is done by using XSD
complexType-S (See clause 7.6).

7.5.1 Derivation by restriction

For information about restricting built-in types, please refer to clause 6 which contains an extensive description on the
translation of restricted simpleType using facets to TTCN-3.

It is also possible in XSD to restrict an anonymous simple type. The translation follows the mapping for built-in data
types, but instead of using the base attribute to identify the type to apply the facet to, the base attribute type shall be
omitted and the type of the inner, anonymous simpleType shall be used.

EXAMPLE: Consider the following example restricting an anonymous simpleType using a pattern facet (the
bold part marks the inner smpleType):

<simpleType name="el8">
<restriction base="string"/>
<pattern value=" (aUser|anotherUser)@(i|I)nstitute"/>
</restriction>
</simpleType>

// This will generate a mapping for the inner type and a restriction thereof:
type XSD.String E18 (pattern " (aUser|anotherUser)@(i|I)nstitute")
with {
variant "name as uncapitalized "
}

7.5.2 Derivation by list

XSD list components shall be mapped to the TTCN-3 record of type. In their simplest form lists shall be mapped by
directly using the listltem attribute as the resulting type.

EXAMPLE 1:
<simpleType name="el9">
<list itemType="float"/>
</simpleType>

// Will translate to

ETSI

44 ETSI ES 201 873-9 V4.1.1 (2009-06)

type record of XSD.Float E19
with {
variant "list";
variant "name as uncapitalized"

}

When using any of the supported XSD facets (length, maxLength, minLength) the translation shall follow the mapping
for built-in list types, with the difference that the base type shall be determined by an anonymous inner list item type.

EXAMPLE 2: Consider this example:

<simpleType name="e20">
<restrictions>
<simpleTypes>
<list itemType="float"/>
</simpleType>
<length value="3"/>
</restrictions>
</simpleType>

// Will map to:
type record length(3) of XSD.Float E20
with {

variant "list";

variant "name as uncapitalized"

}

//For instance the template:
template E20 t E20:={ 1.0, 2.0, 3.0 }
// will be encoded as:

<?xml version="1.0" encoding="UTF-8"?>
<e20>

1.0 2.0 3.0

</e20>

The other XSD facets shall be mapped accordingly (refer to respective 6.1 clauses). If no itemType is given, the
mapping has to be implemented using the given inner type (see clause 7.5.3).

7.5.3 Derivation by union

An XSD union is considered as a set of mutually exclusive alternative types for a ssimpleType. As this is compatible
with the union type of TTCN-3, a simpleType derived by union in XSD shall be mapped to a union type definition in
TTCN-3. The TTCN-3 union type shall contain one alternative for each member type of the XSD union. The field
names of the TTCN-3 union type shall be the result of applying clause 5.2.2 to either to the unqualified name of the
member type (in case of built-in XSD data types and user defined hamed types) or to the string "alt" (in case of
unnamed member types).

The encoding instruction “useUnion" shall be applied to the generated union type and, in addition, the "name as
("name as followed by a pair of single quote followed by a double quote) encoding instruction shall be applied to each
field generated for an unnamed member type.

NOTE: Please note, that alt and the names of several built-in XSD data types are TTCN-3 keywords, hence
according to the naming rules these field identifiers will be postfixed with a single underscore character.

EXAMPLE 1: Mapping of named and unnamed simple type definitions derived by union.

<!-- Please compare the mapping of the two definitions below -->
<xsd:simpleType name="e2lnamed">

<xsd:union itemType="xsd:integer xsd:boolean"/>
</xsd:simpleType>

<simpleType name="e2lunnamed">
<unions>
<simpleTypes>
<restriction base="string"/>
</simpleType>
<simpleTypes>
<restriction base="float"/>
</simpleType>

ETSI

45 ETSI ES 201 873-9 V4.1.1 (2009-06)

</unions>
</simpleType>

// Results in the following mappings:
type union E2lnamed {

XSD.Integer integer ,

XSD.Boolean boolean_

with {
variant "name as uncapitalized";
variant "useUnion"

}

type union E2lunnamed {
XSD.String alt_,
XSD.Float alt_1

with {
variant "name as uncapitalized";
variant "useUnion"
variant(alt_, alt_1) "name as ''"

EXAMPLE 2:

// For instance, the below structure:
type record E2la
E2lunnamed e2lunnamed,
XSD.String foo

with {
variant "name as uncapitalized";
variant "element"

}

template E2la t_E2la:={
e2lunnamed := { alt_ := "ding" },
foo:="foostring"

// will result in the following encoding:

<?xml version="1.0" encoding="UTF-8"7?>

<e2la xmlns:xsi='http://www.w3.0rg/2001/XMLSchema-instance' >
<e2lunnamed xsi:type="string">ding</e2lunnamed>
<foo>foostring</foo>

</e2la>

EXAMPLE 3: Mixed use of named and unnamed types.

<xsd:simpleType name="Time-or-int-or-boolean--or-dateRestricted">
<xsd:union itemType="xsd:time e2lnamed">
<xsd:simpleType>
<xsd:restriction base="xsd:date">
<xsd:minInclusive value="2003-01-01"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

//Will be mapped to the TTCN-3 type definition:
type union Time or_ int or boolean or dateRestricted ({
XSD.Time time,
XSD.Integer integer ,
XSD.Boolean boolean_,
XSD.Date alt_

with {
variant "useUnion";
variant (alt_) "name as ''"

}

The only supported facet is enumeration, allowing mixing enumerations of different kinds.

ETSI

46 ETSI ES 201 873-9 V4.1.1 (2009-06)

EXAMPLE 4: Mapping member type with an enumeration facet.

<xsd:element name="maxOccurs"s>
<xsd:simpleType>
<xsd:union memberTypes="xsd:nonNegativeInteger"s>
<xsd:simpleType>
<xsd:restriction base="xsd:token">
<xsd:enumeration name="unbounded"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>
</xsd:element>

//Will be translated to TTCN-3 as:

type union MaxOccurs {
XSD.NonNegativeInteger nonNegativeInteger,
enumerated {unbounded} alt

with {
variant "name as uncapitalized";
variant "element";
variant "useUnion";
variant (alt_) "name as ''"

EXAMPLE 5: Mapping member types with enumeration facets applied to different member types.

<simpleType name="e22">
<restriction base="e2lunnamed">
<enumeration value="20"/>
<enumeration value="50"/>
<enumeration value="small"/>

</restriction>
</simpleType>
// will be translated to:
type E2lunnamed E22 ({alt 1:=20.0},{alt 1:=50.0}, {alt_:="small"})
with {

variant "name as uncapitalized"

}

7.6 ComplexType components

The XSD complexType is used for creating new types that contain elements and attributes. XSD complexTypes may be
defined globally as child of schema or redefine(in which case the name XSD attribute is mandatory), or locally in an
anonymous fashion (as a child of element, without the name XSD attribute).

Globally defined XSD complexTypes shall be translated to a TTCN-3 record type. This record type shall enframe
the fields resulted by mapping the content (the children) of the XSD complexType as specified in the next clauses. The
name of the TTCN-3 record type shall be the result of applying clause 5.2.2 to the XSD name attribute of the
complexType definition.

Locally defined anonymous complexTypes shall be ignored (not translated to TTCN-3). In this case the record type
generated for the parent element of the complexType (see clause 7.3), shall enframe the fields resulted by mapping the
content (the children) of the XSD complexType.

NOTE: The mapping rules in subsequent clauses may be influenced by the attributes applied to the component, if
any. See more details in clause 7.1, especially in clause 7.1.4.

7.6.1 ComplexType containing simple content

An XSD simpleContent component may extend or restrict an XSD simple type, being the base type of the
simpleContent and expands the base type with attributes, but not elements.

7.6.1.1 Extending simple content

When extending XSD simpleContent, further XSD attributes may be added to the original type.

ETSI

47 ETSI ES 201 873-9 V4.1.1 (2009-06)

The base type of the extended simpleContent and the additional XSD attributes shall be mapped to fields of the TTCN-3
record type, generated for the enclosing XSD complexType (see clause 7.6). At first, attribute elements and attribute
groups shall be translated according to clause 7.6.7, and added to the enframing TTCN-3 record (see clause 7.6).
Next, the extended type shall be mapped to TTCN-3 and added as a field of the enframing record. The field name of
the latter shall be "base" and the variant attribute "untagged" shall be attached to it.

EXAMPLE: The example below extends a built-in type by adding an attribute.

<complexType name="e23">
<simpleContent>
<extension base="string">
<attribute name="foo" type="float"/>
<attribute name="bar" type="integer"/>
</extension>
</simpleContent>
</complexType>

// Will be mapped as:
type record E23

XSD.Integer bar optional,
XSD.Float foo optiomnal,
XSD.String base

with {
variant "name as uncapitalized";
variant (base) "untagged";
variant (bar, foo) "attribute"

7.6.1.2 Restricting simple content

An XSD simpleContent may restrict its base type or attributes of the base type by applying more restrictive facets than
those of the base type (if any).

Such XSD simpleContent shall be mapped to fields of the enframing TTCN-3 record (see clause 7.6). At first, the
fields corresponding to the local attribute definitions, attribute and attributeGroup references shall be generated
according to clause 7.6.7, followed by the field generated for the base type.. The field name of the latter shall be "base™.
The restrictions of the given simpleContent shall be applied to the "base” field directly (i.e. the base type shall not be
referenced but translated to a new type definition in TTCN-3).

EXAMPLE: Example for restriction of a base type.

<complexType name="e24">
<simpleContents>
<restriction base="ns:e23">
<length value="4"/>
</restrictions>
</simpleContent>
</complexType>

//Is translated to:

type record E24 {
XSD.Integer boo optional,
XSD.Float foo optional,
XSD.String base length(4)

with {
variant (base) "untagged";

variant (foo) "attribute";
variant "name as uncapitalized"

}

Other base types shall be dealt with accordingly, see clause 6.

7.6.2 ComplexType containing complex content

In contrast to simpleContent, complexContent is allowed to have elements. It is possible to extend a base type with by
adding attributes or elements, it is also possible to restrict a base type to certain elements or attributes.

ETSI

48 ETSI ES 201 873-9 V4.1.1 (2009-06)

7.6.2.1 Complex content derived by extending complex types

By using the XSD extension for a complexContent it is possible to derive new complex types from a base (complex)
type by adding attributes, elements or groups (group, attributeGroup). The compositor of the base type may be
sequence or choice (i.e. complex types with the compositor all shall not be extended).

This shall be translated to TTCN-3 as follows (the generated TTCN-3 constructs shall be added to the enframing
TTCN-3 record, see clause 7.6, in the order of the items below):

a) At first, attributes and attribute and attribute group references of the base type and the extending type shall be
translated according to clause 7.6.7 and the resulted fields added to the enframing TTCN-3 record directly
(i.e. without nesting).

b) The choice or sequence content model of the base (extended) complexType shall be mapped to TTCN-3
according to clauses 7.6.5 or 7.6.6 respectively, and the resulted TTCN-3 constructs shall be added to the
enframing record.

¢) The extending choice or sequence content model of the extending complexContent shall be mapped to TTCN-3
according to clauses 7.6.5 or 7.6.6 respectively, and the resulted TTCN-3 constructs shall be added to the
enframing record.

EXAMPLE 1: Both the base and the extending types have the compositor sequence.

<!-- The base definitions: -->
<complexType name="e25seq">
<sequence>

<element name="titleElemBase" type="string"/>
<element name="forenameElemBase" type="string"/>
<element name="surnameElemBase" type="string"/>
</sequence>
<attribute name="genderAttrBase" type="integer"/>
<attributeGroup ref="ns:g25attr2"/>
</complexType>

<group name="g25seqg">
<sequence>
<element name="familyStatusElemInGroup" type="string"/>
<element name="spouseElemInGroup" type="string" minOccurs="0"/>
</sequence>
</group>

<attributeGroup name="g25attrl"s>
<attribute name="birthPlaceAttrGroup" type="string"/>
<attribute name="birthDateAttrGroup" type="string"/>
</attributeGroup>

<attributeGroup name="g25attr2">
<attribute name="jobPositionAttrGroup" type="string"/>

</attributeGroup>
<!-- Now a type is defined that extends e25seq by adding a new element, group and attributes: -->
<complexType name="e26seq">
<complexContent>
<extension base="ns:e25seq">
<sequence>

<element name="ageElemExt" type="integer"/>
<group ref="ns:g25seq"/>
</sequence>
<attribute name="unitOfAge" type="string"/>
<attributeGroup ref="ns:g25attrl"/>
</extensions>
</complexContent>
</complexType>

// This is translated to the TTCN-3 structure:
type record E26seq
{
// fields corresponding to attributes of the base and the extending type
// (in alphabetical order)
XSD.String birthDateAttrGroup optional,
XSD.String birthPlaceAttrGroup optional,

ETSI

49 ETSI ES 201 873-9 V4.1.1 (2009-06)

XSD.Integer genderAttrBase optional,

XSD.String jobPositionAttrGroup optiomal,

XSD.String unitOfAge optional,

// followed by fields corresponding to elements of the base type

XSD.String titleElemBase,

XSD.String forenameElemBase,

XSD.String surnameElemBase,

// finally fields corresponding to the extending element and group reference
XSD.Integer ageElemExt,

G25seqg g25seq

with {
variant "name as uncapitalized ";
variant (birthDateAttrGroup, birthPlaceAttrGroup, genderAttrBase, jobPositionAttrGroup,
unitOfAge) "attribute";
}i
// where
type record G25seq {
XSD.String familyStatusElemInGroup,

XSD.String spouseElemInGroup optional
with {
variant "untagged"
}
EXAMPLE 2: Both the base and the extending types have the compositor sequence and multiple occurrences are
allowed.
<!-- Additional base definition:-->

<complexType name="e25segRecurrence">
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="titleElemBase" type="string"/>
<element name="forenameElemBase" type="string"/>
<element name="surnameElemBase" type="string"/>
</sequence>
<attribute name="genderAttrBase" type="integer"/>
<attributeGroup ref="ns:g25attr2"/>
</complexType>

<!-- The extending type definition: --»>

<complexType name="e26seqgReccurrence">
<complexContent>
<extension base="ns:e25seq">
<sequence minOccurs="0" maxOccurs="unbounded">
<group ref="ns:g25cho"/>
<element name="ageElemExt" type="integer"/>
</sequence>
<attribute name="unitOfAge" type="string"/>
</extensions>
</complexContent>
</complexType>

<complexType name="e26segDoubleRecurrence">
<complexContent>
<extension base="ns:e25segRecurrence" >
<sequence minOccurs="0" maxOccurs="unbounded">
<group ref="ns:g25cho"/>
<element name="ageElemExt" type="integer"/>
</sequence>
<attribute name="unitOfAge" type="string"/>
</extension>
</complexContent>
</complexType>

//The extending types are translated to TTCN-3 as:

type record E26segRecurrence {
// fields corresponding to attributes of the base and the extending type
// (in alphabetical order)
XSD.Integer genderAttrBase optional,
XSD.String jobPositionAttrGroup optiomal,
XSD.String unitOfAge optional,
// followed by a "simple" field list corresponding to elements of the base type
XSD.String titleElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase,

ETSI

50 ETSI ES 201 873-9 V4.1.1 (2009-06)

// the extending sequence is recurring (see clause 7.6.6.6 for the mapping)
record of record {

G25seq g25seq

XSD.Integer ageElemExt,
} sequence list

with {
variant "name as uncapitalized";
variant (sequence_list) "untagged";
variant (genderAttrBase, jobPositionAttrGroup, unitOfAge) "attribute"

}

type record E26segDoubleRecurrence {
// fields corresponding to attributes of the base and the extending type
// (in alphabetical order)
XSD.Integer genderAttrBase optional,
XSD.String jobPositionAttrGroup optional,
XSD.String unitOfAge optional,
// followed by a record of record field containing the fields corresponding to elements of
// the base type; the base type is a recurring sequence (see clause
// 7.6.6.6 for the
// mapping)
record of record {
XSD.String titleElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase
} sequence list,
// the extending sequence is recurring too(see clause
// 7.6.6.6 for the
// mapping)
record of record {
G25seqg g25seq
XSD.Integer ageElemExt,
} sequence list 1

with {
variant "name as uncapitalized";
variant (sequence_ list, sequence_list_ 1) "untagged";
variant (genderAttrBase, jobPositionAttrGroup, unitOfAge) "attribute"

EXAMPLE 3: Both the base and the extending types have the compositor choice.

<complexType name="e25cho">
<choice>
<element name="titleElemBase" type="string"/>
<element name="forenameElemBase" type="string"/>
<element name="forenameElemBase" type="string"/>

</choice>
<attribute name="genderAttrBase" type="string"/>
</complexType>
<!-- and -->
<complexType name="e26cho">
<complexContent>
<extension base="ns:e25cho">
<choice>
<element name="ageElemExt" type="integer"/>
<element name="birthdayElemExt" type="date"/>
</choice>
<attribute name="unitAttrExt" type="string"/>
</extension>
</complexContent>
</complexType>

//Are translated to TTCN-3 as:
type record E26cho {
XSD.String genderAttrBase optional,
XSD.String unitAttrExt optiomnal,
union {
XSD.String titleElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase
} choice,
union {
XSD.Integer ageElemExt
XSD.Date birthdayElemExt
} choice_1

ETSI

51 ETSI ES 201 873-9 V4.1.1 (2009-06)

with {
variant "name as uncapitalized";
variant (genderAttrBase, unitAttrExt) "attribute";
variant (choice, choice 1) "untagged"

EXAMPLE 4: Extension of a sequence base type by a choice model group.

<complexType name="e27cho">
<complexContent>
<extension base="ns:e25seq">
<choice>
<element name="ageElemExt" type="integer"/>
<element name="birthdayElemExt" type="date"/>
</choice>
<attribute name="unitAttrExt" type="string"/>
</extensions>
</complexContent>
</complexType>

// is translated to TTCN-3 as:
type record E27cho
{
XSD.Integer genderAttrBase optional,
XSD.String jobPositionAttrGroup optiomnal,
XSD.String unitAttrExt optional,
XSD.String titleElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase,
union {
XSD.Integer ageElemExt,
XSD.Date birthdayElemExt
} choice

with {
variant "name as uncapitalized";
variant (genderAttrBase, jobPositionAttrGroup, unitAttrExt) "attribute";
variant (choice) "untagged"

EXAMPLE 5: Extending of a base type with choice model group by a sequence model group.

<complexType name="e27seq">
<complexContent>
<extension base="ns:e25cho">
<sequence>
<element name="ageElemExt" type="integer"/>
</sequence>
<attribute name="unitAttrExt" type="string"/>
</extensions>
</complexContent>
</complexType>

// Is translated to TTCN-3 as:
type record E27seq {
XSD.String genderAttrBase optional,
XSD.String unitAttrExt optiomnal,
union {
XSD.String ElemBase,
XSD.String forenameElemBase,
XSD.String surnameElemBase
} choice,
XSD.Integer ageElemExt

with {
variant "name as uncapitalized";
variant (genderAttrBase, unitAttrExt) "attribute";
variant (choice) "untagged";

ETSI

52 ETSI ES 201 873-9 V4.1.1 (2009-06)

EXAMPLE 6: Recursive extension of an anonymous inner type is realized using the TTCN-3 dot notation (starts
from the name of the outmost type).

<complexType name="X">
<sequence>
<element name="x" type="string"/>
<element name="y" minOccurs="0">
<complexType>
<complexContent>
<extension base="ns:X"/>
<sequence>
<element name="z" type="string"/>
</sequence>
</extensions>
</complexContent>
</complexType>
</element>
</sequence>
</complexType>

// Is translated to the TTCN-3 structure
type record X {
XSD.String x,
record {
XSD.String x,
X.y y optional,
XSD.String z
} v optionmal

7.6.2.2 Complex content derived by restriction
The restriction uses a base complex type and restricts one or more of its components.

All components present in the restricted type shall be mapped to TTCN-3, applying the restrictions, and the resulted
fields shall be added to the enframing TTCN-3 record (see clause 7.6). Thus neither the base type nor its components
are referenced from the restricted type.

EXAMPLE 1: Restricting anyType: in the example below anyType (any possible type) is used as the base type
and it is restricted to only two elements.

<complexType name="e28">
<complexContent>
<restriction base="anyType">
<sequence>
<element name="size" type="nonPositiveInteger"/>
<element name="unit" type="NMTOKEN"/>
</sequence>
</restrictions>
</complexContent>
</complexType>

// Is translated to:

type record E28 {
XSD.NonPositiveInteger size,
XSD.NMTOKEN unit

with {

variant "name as uncapitalized"

EXAMPLE 2: Restricting a user defined complex type (the effect of the use attribute is described in
clause 7.1.12).

<element name="comment" type="string"/>

<!-- The base type is: -->
<complexType name="PurchaseOrderType">
<sequence>
<element name="shipTo" type="string"/>
<element name="billTo" type="string"/>
<element ref="ns:comment" minOccurs="0"/>
<element name="items" type="ns:Items"/>
</sequence>

ETSI

53 ETSI ES 201 873-9 V4.1.1 (2009-06)

<attribute name="shipDate" type="date"/>
<attribute name="orderDate" type="date"/>

</complexType>
<!-- The restricting type is: -->
<complexType name="RestrictedPurchaseOrderType">
<complexContent>
<restriction base="ns:PurchaseOrderType">
<sequence>

<element name="shipTo" type="string"/>
<element name="billTo" type="string"/>
<element ref="ns:comment" minOccurs="1"/>
<element name="items" type="ns:Items"/>

</sequence>

<attribute name="shipDate" type="date" use="required" />

<attribute name="orderDate" type="date" use="prohibited" />

</restriction>
</complexContent>
</complexType>

//is translated to TTCN-3 as:

type XSD.String Comment

with {
variant "name as uncapitalized";
variant "element"

}

/* base type */

type record PurchaseOrderType {
XSD.Date orderDate optional,
XSD.Date shipDate optional,
XSD.String shipTo,
XSD.String billTo,
Comment comment optional,
Items items

with {
variant (orderDate, shipDate) "attribute"
}

/* restricting type */
type record RestrictedPurchaseOrderType {
XSD.Date orderDate, //note that this field become mandatory
//note that the field shipDate is not added
XSD.String shipTo,
XSD.String billTo,
Comment comment, //note that this field become mandatory
Items items

with {
variant (orderDate) "attribute"

7.6.3 Group components

Referenced group components, which are children of complexType, shall be translated according to the compositors in
the group definition, i.e. as if the content of the referenced group was present in the complexType definition directly.
See details in clauses 7.6.4, 7.6.5 and 7.6.6.

7.6.4 All content

An XSD all compositor defines a collection of elements, which can appear in any order in an XML value.

In the general case, when the values of both the minOccurs and maxOccurs attributes of the all compositor equal "1"
(either explicitly or by defaulting to "1"), it shall be translated to TTCN-3 by adding the fields resulted by mapping the
XSD elements to the enframing TTCN-3 record (see clause 7.6). By setting the minOccurs XSD attribute of the all
compositor to 0, all elements of the all content model are becoming optional. In this case all record fields corresponding
to the elements of the all model group shall be set to optional too. In addition, to these fields, an extra first field
named "order" shall be inserted into the enframing record. The type of this extra field shall be record of
enumerated, where the names of the enumeration values shall be the names of the fields resulted by mapping the
elements of the all structure. Finally, a "useOrder" variant attribute shall be attached to the enframing record.

ETSI

54

ETSI ES 201 873-9 V4.1.1 (2009-06)

The order field shall precede the fields resulted by the translation of the attributes and attribute and attributeGroup
references of the given complexType but shall follow the embed_values field, if any, generated for the mixed="true"

attribute value (see also clause 7.6.8).

NOTE: When encoding, the presence and order of elements in the encoded XML instance will be controlled by
the order field. This is indicated by the "useOrder" encoding instruction. When decoding, the presence
and order of elements in the XML instance will control the value of the order field that appears in the
decoded structure. See more details in annex B. This mapping is required by the alignment to ITU-T

Recommendation X.694 [4].

EXAMPLE 1: XSD all content model with mandatory elements.

<complexType name="e29a">
<alls>
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
<element name="ding" type="string"/>
</alls>
</complexType>

// Is mapped to the following TTCN-3 structure:
type record E29a {
record of enumerated {foo,bar,ding} order,
XSD.Integer foo,
XSD.Float Dbar,
XSD.String ding

with {
variant "name as uncapitalized ";
variant "useOrder"

EXAMPLE 2: XSD all content model with each element being optional.

<complexType name="e29b">
<all minOccurs="0">
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
<element name="ding" type="string"/>
</alls>
</complexType>

// Is mapped to the following TTCN-3 structure:
type record E29b
record of enumerated {foo,bar,ding} order,
XSD.Integer foo optional,
XSD.Float Dbar optional,
XSD.String ding optional

with {
variant "name as uncapitalized ";
variant "useOrder"

EXAMPLE 3: XSD all content model, with selected optional elements.

<complexType name="e29c">
<all>
<element name="foo" type="integer"/>
<element name="bar" type="float" minOccurs="0"/>
<element name="ding" type="string"/>
</all>
</complexType>

// Is mapped to the following TTCN-3 structure:
type record E29c {
record of enumerated {foo,bar,ding} order,
XSD.Integer foo,
XSD.Float Dbar optional,
XSD.String ding

with {

variant "name as uncapitalized ";
variant "useOrder"

ETSI

55 ETSI ES 201 873-9 V4.1.1 (2009-06)

EXAMPLE 4: XSD complex type with attributes and all content model.
<attribute name="attrGlobal" type="token"/>

<attributeGroup name="attrGroup">
<attribute name="attrInGroup2" type="token"/>
<attribute name="attrInGroupl" type="token"/>
</attributeGroup>

<complexType name="e29aAndAttributes">
<alls>
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
<element name="ding" type="string"/>
</alls>
<attribute name="attrLocal" type="integer"/>
<attribute ref="ns:attrGlobal"/>
<attributeGroup ref="ns:attrGroup"/>
</complexType>

//Is translated to TTCN-3 as:
type record E29aAndAttributes {
record of enumerated { foo, bar, ding } order,
XSD.Token attrInGroupl optional,
XSD.Token attrInGroup2 optional,
XSD.Integer attrLocal optional,
XSD.Token attrGlobal optional,
XSD.Integer foo,
XSD.Float bar,
XSD.String ding

with {
variant "name as uncapitalized";
variant "useOrder";
variant (attrInGroupl, attrInGroup2, attrLocal, attrGlobal) "attribute"

7.6.5 Choice content

An XSD choice content defines a collection of mutually exclusive alternatives.

In the general case, when both the minOccurs and maxOccurs attribute equal to 1" (either explicitly or by defaulting to
"1"), it shall be mapped to a TTCN-3 union field with the field name "choice" and the encoding instruction
"untagged" shall be attached to this field.

If the value of the minOccurs or the maxOccurs attributes or both differ from "1", the following rules shall apply:
a) The union field shall be generated as above (including attaching the "untagged" encoding instruction).
b) The procedures in clause 7.1.4 shall be called for the union field.

NOTE: As the result of applying clause 7.1.4, the type of the field may be changed to record of union and
in parallel the name of the field may be changed to "choice_list".

¢) Finally, clause 5.2.2 shall be applied to the name of the resulted field and subsequently the field shall be added
to the enframing TTCN-3 record type (see clause 7.6) or record or union field corresponding to the parent of
the mapped choice compositor.

The content for a choice component may be any combination of element, group, choice, sequence or any. The following
clauses discuss the mapping for various contents nested in a choice component.
7.65.1 Choice with nested elements

Nested elements shall be mapped as fields of the enframing TTCN-3 union or record of union field
(see clause 7.6.5) according to clause 7.3.

EXAMPLE:

<complexType name="e30">
<choice>
<element name="foo" type="integer"/>

ETSI

<element name="bar" type="float"/>
</choices>
</complexType>

// Will be translated to:
type record E30 {
union {
XSD.Integer foo,
XSD.Float bar
} choice

with {

variant "name as uncapitalized";
variant (choice) "untagged"

7.6.5.2 Choice with nested group

56 ETSI ES 201 873-9 V4.1.1 (2009-06)

Nested group components shall be mapped along with other content as a field of the enframing TTCN-3 union or
record of union field (see clause 7.6.5). The type of this field shall refer to the TTCN-3 type generated for the
corresponding group and the name of the field shall be the name of the TTCN-3 type with the first character

uncapitalized.

EXAMPLE: The following example shows this with a sequence group and an element.

<group name="e31">
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
</group>

<complexType name="e32">
<choice>
<group ref="ns:e31"/>
<element name="ding" type="string"/>
</choice>
</complexType>

//Is translated to TTCN-3 as:
type record E31 {
XSD.String foo,
XSD.String bar

}
with
{
variant "name as uncapitalized "
}
type record E32 {
union {
E31 e31,
XSD.String ding
} choice
with {
variant "name as uncapitalized ";
variant (choice) "untagged"
}
7.6.5.3 Choice with nested choice
An XSD choice nested to a choice shall be translated according to clause 7.6.5.
EXAMPLE:
<complexType name="e33">
<choice>
<choice>

<element name="foo" type="string"/>
<element name="bar" type="string"/>

</choice>
<element name="ding" type="string"/>
</choice>
</complexType>

ETSI

// Is mapped to TTCN-3 as:
type record E33 {
union {
union {
XSD.String foo,
XSD.String bar
} choice,
XSD.String ding
} choice

with {

variant "name as uncapitalized";
variant (choice, choice.choice) "untagged"

7.6.5.4 Choice with nested sequence

57

ETSI ES 201 873-9 V4.1.1 (2009-06)

An XSD sequence nested to a choice shall be mapped to a TTCN-3 record field of the enframing TTCN-3 union or

record of union field (see clause 7.6.5), according to clause 7.6.6.

EXAMPLE 1: Single sequence nested to choice.

<complexType name="e34a">
<choice>
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<element name="ding" type="string"/>
</choice>
</complexType>

// Is translated to:
type record E34a {
union {
record {
XSD.String foo,
XSD.String bar
} sequence,
XSD.String ding
} choice

with {
variant "name as uncapitalized ";
variant (choice, choice.sequence) "untagged"

EXAMPLE 2: Multiple sequence-s nested to choice.

<complexType name="e34b">

<choice>
<sequence>
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>

<element name="ding" type="string"/>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<element name="ding" type="string"/>
</choice>
</complexType>

// Is translated to:
type record E34b {
union {
record {
record {
XSD.String foo,
XSD.String bar
} sequence,
XSD.String ding,
XSD.String foo,
XSD.String bar
} sequence,

ETSI

58 ETSI ES 201 873-9 V4.1.1 (2009-06)

XSD.String ding
} choice

with {
variant "name as uncapitalized ";
variant (choice, choice.sequence, choice.sequence.sequence) "untagged"

7.6.55 Choice with nested any
An XSD any element nested to a choice shall be translated according to clause 7.7.

EXAMPLE:

<complexType name="e35">
<choice>
<element name="foo" type="string"/>
<any namespace="other"/>
</choices>
</complexType>

// Is translated to:
type record E35 {
union {
XSD.String foo,
XSD.String elem
} choice

with {
variant "name as uncapitalized";
variant (choice) "untagged"
variant (choice.elem) "anyElement from 'other' "

7.6.6 Sequence content

An XSD sequence defines an ordered collection of components and its content may be of any combination of XSD
elements, group references, choice, sequence or any.

Clauses 7.6.6.1 to 7.6.6.5 discuss the mapping for various contents nested in an XSD sequence component in the
general case, when both the minOccurs and maxOccurs attribute equal to "1" (either explicitly or by defaulting to "1").

Clause 7.6.6.6 describes the mapping when either the minOccurs or the maxOccurs attribute of the sequence compositor
or both do not equal to "1".

7.6.6.1 Sequence with nested element content

In the general case, child elements of a sequence, which is a child of a complexType, shall be mapped to TTCN-3 as
fields of the enframing record (see clause 7.6) (i.e. the sequence itself is not producing any TTCN-3 construct).

EXAMPLE: Mapping a mandatory sequence content.

<complexType name="e36a">
<sequence>
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
</sequence>
</complexType>

// Is mapped to

type record E36a {
XSD.Integer foo,
XSD.Float Dbar

with {
variant "name as uncapitalized"

ETSI

59 ETSI ES 201 873-9 V4.1.1 (2009-06)

7.6.6.2 Sequence with nested group content

In the general case, nested group reference components shall be mapped to a field of the enframing record type
(see clause 7.6) or field. The type of the field shall be the TTCN-3 type generated for the referenced group and the name
of the field shall be the result of applying clause 5.2.2 to the name of the referenced group.

EXAMPLE: The following example shows this translation with a choice group and an element:

<group name="e37">
<choice>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</choice>
</group>

<complexType name="e38">
<sequence>
<group ref="ns:e37"/>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is translated to:

type union E37 {
XSD.String foo,
XSD.String bar

with {
variant "name as uncapitalized";
variant "untagged"

}
type record E38 {
E37 e37,
XSD.String ding
with {
variant "name as uncapitalized"
}
7.6.6.3 Sequence with nested choice content

An XSD choice nested to a sequence shall be mapped as a field of the enframing record (see clauses 7.6, 7.6.5.4 and
7.6.6.4), according to clause 7.6.5 (i.e. the sequence itself is not producing any TTCN-3 construct).

EXAMPLE:

<complexType name="e39">
<sequence>
<choice>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</choice>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is translated to:
type record E39 {
union {
XSD.String foo,
XSD.String bar
} choice,
XSD.String ding

with {

variant "name as uncapitalized";
variant (choice) "untagged"

ETSI

60 ETSI ES 201 873-9 V4.1.1 (2009-06)

7.6.6.4 Sequence with nested sequence content

In the general case, a sequence nested in a sequence shall be translated to TTCN-3 according to clause 7.6.6 and the
resulted constructs shall be added to the enframing record type or field (see also clauses 7.6 and 7.6.5.4).

EXAMPLE 1: Sequence nesting a mandatory sequence.

<complexType name="e40a">
<sequences>
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is mapped as

type record E40a {
XSD.String foo,
XSD.String bar,
XSD.String ding

with {
variant "name as uncapitalized"

EXAMPLE 2: Sequence nesting another sequence, choice and an additional element.

<complexType name="e40b">
<sequences>
<sequence>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<choice>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</choice>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is mapped as
type record E40b {
XSD.String foo,
XSD.String bar,
union {
XSD.String foo,
XSD.String bar
} choice,
XSD.String ding

with {
variant "name as uncapitalized";
variant (choice) "untagged"

7.6.6.5 Sequence with nested any content
An XSD any element nested in a sequence shall be translated according to clause 7.7.

EXAMPLE:

<complexType name="e4l">
<sequence>
<element name="foo" type="string"/>
<any/>
</sequence>
</complexType>

// Is translated to:

type record E41 {
XSD.String foo,
XSD.String elem

ETSI

61 ETSI ES 201 873-9 V4.1.1 (2009-06)

with {
variant "name as uncapitalized";
variant (elem) "anyElement"

7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the mapping

When either or both the minOccurs and/or the maxOccurs attributes of the sequence compositor specify a different
value than "1", the following rules shall apply:

a) First, the sequence compositor shall be mapped to a TTCN-3 record field (as opposed to ignoring it in the
previous clauses, when both minOccurs and maxOccurs equal to 1) with the name "sequence".

b) The encoding instruction "untagged" shall be attached to the field corresponding to sequence.
¢) The procedures in clause 7.1.4 shall be applied to this record field.

NOTE: As the result of applying clause 7.1.4, the type of the field may be changed to record of record
and in parallel the name of the field may be changed to "sequence_list".

d) Finally, clause 5.2.2 shall be applied to the name of the resulted field and the field shall be added to the
enframing TTCN-3 record (see clauses 7.6 and 7.6.6) or union field (see clause 7.6.5).

EXAMPLE 1: Mapping an optional sequence.

<complexType name="e36b">
<sequence minOccurs="0">
<element name="foo" type="integer"/>
<element name="bar" type="float"/>
</sequence>
</complexType>

// Is mapped to
type record E36b {
record {
XSD.Integer foo,
XSD.Float bar
} sequence optional

with {
variant "name as uncapitalized";
variant (sequence) "untagged"

EXAMPLE 2: Sequence nesting an optional sequence.

<complexType name="e40c">
<sequences>
<sequence minOccurs="0">
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<choice>
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</choice>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is mapped to
type record E40c {
record {
XSD.String foo,
XSD.String bar
} sequence optional,
union {
XSD.String foo,
XSD.String bar
} choice,
XSD.String ding
}

with {

ETSI

62 ETSI ES 201 873-9 V4.1.1 (2009-06)

variant "name as uncapitalized";
variant (sequence, choice) "untagged"

EXAMPLE 3: Sequence nesting a sequence of multiple recurrence.

<complexType name="e40d">
<sequence>
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="foo" type="string"/>
<element name="bar" type="string"/>
</sequence>
<element name="ding" type="string"/>
</sequence>
</complexType>

// Is mapped to
type record E40d {
record of record {
XSD.String foo,
XSD.String bar
} sequence list,
XSD.String ding

with {
variant "name as uncapitalized";
variant (sequence_list) "untagged"

7.6.7 Attribute definitions, attribute and attributeGroup references

Locally defined attribute elements, references to global attribute elements and references to attributeGroups shall be
mapped jointly. XSD attributes, either local or referenced global (including the content of referenced attributeGroups)
shall be mapped to individual fields of the enframing TTCN-3 record (see clause 7.6) directly (i.e. without nesting).
The types of the fields shall be the types of the corresponding attributes, mapped to TTCN-3, and the names of the
fields shall be the names resulted in applying clause 5.2.2 to the attribute names. The fields generated for local attribute
definitions, references and contents of referenced attribute groups shall be inserted in the following order: they shall
first be ordered, in an ascending alphabetical order, by the target namespaces of the attribute declarations, with the fields
without a target namespace preceding fields with a target namespace, and then by the names of the attribute declarations
within each target namespace (also in ascending alphabetical order).

XSD local attribute declarations and references may contain also the special attribute use. The above mapping shall be
carried out jointly with the procedures specified for the use attribute in clause 7.1.12.

All generated TTCN-3 fields shall also be appended with the "attribute" encoding instruction.

EXAMPLE 1: Referencing an attributeGroup in a complexType.

<attributeGroup name="e42">
<attribute name="foo" type="float"/>
<attribute name="bar" type="float"/>
</attributeGroup>

<complexType name="e44">

<sequence>
<element name="ding" type="string"/>
</sequence>
<attributeGroup ref="ns:e42"/>
</complexType>

// Is translated to TTCN-3 as:
type record E44 {
XSD.Float bar optional
XSD.Float foo optional,
XSD.String ding,

with {

variant "name as uncapitalized";
variant (bar, foo) "attribute"

ETSI

EXAMPLE 2:

63

namespace.

<xsd:attribute name="fooGlobal" type="xsd:float" />
<xsd:attribute name="barGlobal" type="xsd:string" />
<xsd:attribute name="dingGlobal" type="xsd:integer" />

<xsd:attributeGroup name="Agroup">
<xsd:attribute name="foolnAgroup" type="xsd:float" />
<xsd:attribute name="barInAgroup" type="xsd:string " />
<xsd:attribute name="dingInAgroup" type="xsd:integer " />

</xsd:attributeGroup>

<xsd:complexType name="el7A">
<xsd:sequence>

<xsd:element name="elem" type="xsd:string"/>

</xsd:sequences>

<xsd:attribute ref="fooGlobal" />
<xsd:attribute ref="barGlobal" />
<xsd:attribute ref="dingGlobal" />

<xsd:attribute name="foolLocal" type="xsd:float"
<xsd:attribute name="barLocal" type="xsd:string"

<xsd:attribute name="dingLocal" type="xsd:integer"

<xsd:attributeGroup ref="Agroup" />
</xsd:complexType>

//is translated to TTCN-3 as:

type XSD.Float FooGlobal

with {
variant "name as uncapitalized ";
variant "attribute"

}

type XSD.String BarGlobal

with {
variant "name as uncapitalized ";
variant "attribute"

}

type XSD.Integer DingGlobal

with {
variant "name as uncapitalized ";
variant "attribute"

}

type record E17A {
XSD.String barGlobal optional,
XSD.String barInAgroup optional,
XSD.String barLocal optional,
XSD.Integer dingGlobal optional,
XSD.Integer dingInAgroup optional,
XSD.Integer dingLocal optional,
XSD.Float fooGlobal optiomnal,
XSD.Float fooInAgroup optional,
XSD.Float foolLocal optiomnal,
XSD.String elem

}

with {
variant "name as uncapitalized ";

/>

ETSI ES 201 873-9 V4.1.1 (2009-06)

Mapping of a local attributes, attribute references and attribute group references without a target

variant (barGlobal, barInAgroup, barLocal,dingGlobal, dingInAgroup, dinglLocal, fooGlobal,

fooInAgroup, fooLocal) "attribute"

//Please note, the order of the field names in the attribute qualifier may be arbitrary

EXAMPLE 3: Mapping the same local attributes, attribute references and attribute group references as above but

with a target schema namespace.

<!-- Using the same global attribute, attribute group and complex type definitions as in the

previous example -->

//el7A is translated to TTCN-3 as:
type record E17A {
XSD.Float barInAgroup optional,
XSD.String barLocal optional,
XSD.Integer dingInAgroup optional,
XSD.Integer dingLocal optional,
XSD.Float fooInAgroup optional,

ETSI

64 ETSI ES 201 873-9 V4.1.1 (2009-06)

XSD.Float foolocal optional,
XSD.String barGlobal optional,
XSD.Integer dingGlobal optional,
XSD.Float fooGlobal optiomnal,
XSD.String elem

with {
variant "name as uncapitalized ";
variant (barInAgroup, barLocal, dingInAgroup,dingLocal, fooInAgroup, fooLocal,barGlobal,
dingGlobal, fooGlobal) "attribute"
//Please note, the order of the field names in the attribute qualifier may be arbitrary

7.6.8 Mixed content

When mixed content is allowed for a complex type or content, (i.e. the mixed attribute is set to "true™) an additional
record of XSD.String field, with the field name "embed_values" shall be generated and inserted as the first
field of the outer enframing TTCN-3 record type generated for the all, choice or sequence content (see clauses 7.6,
7.6.4,7.6.5 and 7.6.6). In TTCN-3 values, elements of the embed_values field shall be used to provide the actual
strings to be inserted into the encoded XML value or extracted from it (the relation between the record of elements and
the strings in the encoded XML values is defined in clause B.3.10). In TTCN-3 values the number of components of the
embed_values field (the number of strings to be inserted) shall not exceed the total number of components present in
the enclosing enframing record, corresponding to the child element elements of the complexType with the
mixed="true" attribute, i.e. ignoring fields corresponding to attribute elements, the embed_ values field itself and the
order field, if present (see clause 7.6.4), plus 1 (i.e. all components of enclosed record of-s).

The embed_values field shall precede all other fields, resulted by the translation of the attributes and attribute and
attributeGroup references of the given complexType and the order field, if any, generated for the all content models
(see also clause 7.6.4).

EXAMPLE 1: Complex type definition with sequence constructor and mixed content type.

<element name="MySegMixed">
<xsd:complexType name="MyComplexType-12" mixed="true">
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:sequences>
<attribute name="attrib" type="integer"/>
</xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MySegMixedMyComplexType 12 {
record of XSD.String embed_values,
// in TTCN-3 values the embed values field may have max. 3 record of components
XSD.Integer attrib optional,
XSD.String a,
XSD.Boolean b

with {
variant "element";
variant "embedValues";
variant (attrib) "attribute"

}

//And the template

template MySegMixedMyComplexType 12 t MySegMixedMyComplexType 12 := {
embed values:= {"The ordered", "has arrived", "Wait for further information."},
a:= "car",
b:= true

}

//will be encoded as
<MySegMixedMyComplexType-12>

The ordered

<a>car

has arrived

true

Wait for further information.
</MySegMixedMyComplexType-12>

ETSI

65 ETSI ES 201 873-9 V4.1.1 (2009-06)

EXAMPLE 2: Complex type definition with sequence constructor of multiple occurrences and mixed content
type.

<element name="MyComplexElem-16">
<xsd:complexType name="MyComplexType-16" mixed="true">
<xsd:sequence maxOccurs="unbounded" minOccurs="0">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:sequences>
</xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MyComplexTypeElem 16 {
record of XSD.String embed_values,
record of record {
XSD.String a,
XSD.Boolean b
} sequence list

with {
variant "name as 'MyComplexElem-16'";
variant "element"
variant "embedValues"

}
//And the template
template MyComplexTypeElem 16 t MyComplexTypeElem 16 := {

embed _values := { "The ordered", "has arrived",

"the ordered", "has arrived!", "Wait for further information."},
sequence list := {
a:= "car", b:= false},
{ a:= "bicycle", b:= true}

}

//will be encoded as
<MyComplexTypeElem-16>
The ordered
<a>car
has arrived
false
the ordered
<asbicycle
has arrived!
true
Wait for further information.
</MyComplexTypeElem-16>

EXAMPLE 3: Complex type definition with all constructor and mixed content type.

<element name="MyComplexElem-13">
<xsd:complexType name="MyComplexType-13" mixed="true">
<xsd:all>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:all>
</xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MyComplexTypeElem 13 {
record of XSD.String embed values,
record of enumerated {a,b} order,
XSD.String a,
XSD.Boolean b

with {
variant "name as 'MyComplexElem-13'";
variant "element";
variant "embedValues";
variant "useOrder"

}

//And the template

template MyComplexTypeElem 13 t_ MyComplexTypeElem 13 := {
embed values:= {"Arrival status", "product name","Wait for further information."},
order := {b,a},

ETSI

66

a:
b:

"Car" ,
false

//will be encoded as
<MyComplexTypeElem-13>

Arrival status

false

product name

<a>car

Wait for further information.
</MyComplexTypeElem-13>

ETSI ES 201 873-9 V4.1.1 (2009-06)

EXAMPLE 4: Complex type definition with all constructor, optional elements and mixed content type.

<xsd:complexType name="MyComplexType-15" mixed="true">
<xsd:all minOccurs="0">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:all>
</xsd:complexType>

// Is translated to the TTCN-3 type definition
type record MyComplexType 15 {
record of XSD.String embed values,
record of enumerated {a,b} order,
XSD.String a optional,
XSD.Boolean b optional

with {
variant "embedValues";
variant "useOrder"

}
//And the template
template MyComplexType 15 t MyComplexType 15 := {
embed values:= {"Arrival status", "Wait for further information."},
order := {b},
a:= omit,
b:= false

//will be encoded as
<MyComplexType-15>

Arrival status

false

Wait for further information.
</MyComplexType-15>

EXAMPLE 5: Complex type definition with choice constructor and mixed content type.

<element name="MyComplexElem-14">

<xsd:complexType name="MyComplexType-14" mixed="true">

<xsd:choices>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:choice>
</xsd:complexType>
</element>

// Is translated to the TTCN-3 type definition
type record MyComplexTypeElem 14 {

record of XSD.String embed_values,
union {
XSD.String a,
XSD.Boolean b
} choice
with {

variant "name as 'MyComplexElem-14'";
variant "element";
variant "embedValues"

}

//And the template
template MyComplexTypeElem 14 t MyComplexTypeElem 14 :=

{

embed values:= {"Arrival status", "Wait for further information."},

choice := { b:= false }

ETSI

67 ETSI ES 201 873-9 V4.1.1 (2009-06)

//will be encoded as
<MyComplexTypeElem-14>

Arrival status

false

Wait for further information.
</MyComplexTypeElem-14>

7.7 Any and anyAttribute

An XSD any element can be defined in complex types, as a child of sequence or choice (i.e. locally only) and specifies
that any well-formed XML is permitted in the type's content model. The content of this XML shall not be parsed and
interpreted by the encoder and decoder. In addition to the any element, which enables element content according to
namespaces, there is an analogous XSD anyAttribute element which enables transparent (from the codec's point of
view) attributes to appear in elements.

The any element shall be translated, like other elements, to a field of the enframing record type or field or union
field (see clauses 7.6, 7.6.5 and 7.6.6). The type of this field shall be XSD. String and the name of the field shall be
the result of applying clause 5.2.2 to "elem".

NOTE: The mapping may be influenced by the attributes applied to the component, if any. See more details in
clause 7.4, especially clause 7.1.4.

The anyAttribute element shall be translated, like other attributes, to a field of the enframing record type or field or
union field (see clauses 7.6, 7.6.5 and 7.6.6). The type of this field shall be record of XSD.String and the name
of the field shall be the result of applying clause 5.2.2 to "attr". In the case an XSD component contains more than one
anyAttribute components (e.g. by a complex type extending an another complex type containing already anyAttribute),
only one record of XSD. String field shall be generated (with the name resulted from applying clause 5.2.2 to
"attr") but the namespace specifications of all anyAttribute components shall be considered in the "anyAttributes”
encoding instruction (see below).

The codec shall be controlled by an "anyElement " or "anyAttributes™ encoding instructions correspondingly,
complemented with an optional "from" or "except" clause specifying the list of namespaces which are allowed or
restricted to qualify the given attribute or element. Details on constructing and use of the "anyAttributes” and
"anyElement" encoding instructions are given in clauses B.3.3 and B.3.2, correspondingly.

EXAMPLE 1: Translating any.

<!l--
Please note, the target namespace of the complexType definitions below is
"http://www.example.org/ttcen/wildcards"

-->

<xs:complexType name="e46">
<XsS:sequences
<xs:any namespace="##any"/>
</Xs:sequence>
</xs:complexType>

<xs:complexType name="ed46a">
<XS:sequence>
<xs:any minOccurs="0" namespace="##fother"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="e46b">
<XS:sequence>
<xs:any minOccurs="0" maxOccurs="unbounded" namespace="##local"/>
</Xs:sequence>
</xs:complexType>

//Are mapped to the following TTCN-3 code and encoding extensions:
type record E46 {
XSD.String elem

with {

variant "name as uncapitalized";
variant (elem) "anyElement"

}

type record E46a {

ETSI

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

68 ETSI ES 201 873-9 V4.1.1 (2009-06)

XSD.String elem optional

with {
variant "name as uncapitalized";

variant (elem) "anyElement except unqualified, 'http://www.organization.org/ttcn/wildcard'"

}

type record E46b {
record of XSD.String elem list

with {
variant "name as uncapitalized";
variant (elem_list) "anyElement except unqualified"

EXAMPLE 2: Translating anyAttribute.

<!-- Please note, the target namespace of the complexType definitions below is
"http://www.example.org/tten/wildcards" --»>
<xs:complexType name="e45">
<xs:anyAttribute namespace="##any"/>
</xs:complexType>

<xs:complexType name="e45a">
<xs:anyAttribute namespace="##other"/>
</xs:complexType>

<xs:complexType name="e45b">
<xs:anyAttribute namespace="##targetNamespace"/>
</xs:complexType>

<xs:complexType name="e45c">
<xs:anyAttribute namespace="##local http://www.example.org/ttcn/attribute"/>
</xs:complexType>

<xs:complexType name="e45d">
<xs:complexContent>
<xs:extension base="e45c">
<xs:anyAttribute namespace="##targetNamespace"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

//Are mapped as follows:
type record E45 {
record of XSD.String attr

with {
variant "name as uncapitalized";
variant (attr) "anyAttributes"

}

type record E45a {
record of XSD.String attr

with {
variant "name as uncapitalized";
variant (attr) "anyAttributes except 'http://www.example.org/ttcn/wildcards'"

}

type record E45b {
record of XSD.String attr

with {
variant "name as uncapitalized";
variant (attr) "anyAttributes from 'http://www.example.org/ttcn/wildcards'"

}

type record E45c {

with {
variant "name as uncapitalized";

variant (attr) "anyAttributes from unqualified, 'http://www.example.org/ttcn/attribute'"

ETSI

69 ETSI ES 201 873-9 V4.1.1 (2009-06)

type record E45d {
record of XSD.String attr

with {

variant "name as uncapitalized";

variant (attr) "anyAttributes from unqualified, 'http://www.example.org/ttcn/attribute',
'http://www.example.org/tten/wildcards!'"

7.8 Annotation

An XSD annotation is used to include additional information in the XSD data. Annotations may appear in every
component and shall be mapped to a corresponding comment in TTCN-3. The comment shall appear in the TTCN-3
code just before the mapped structure it belongs to. The present document does not describe a format in which the
comment shall be inserted into the TTCN-3 code.

EXAMPLE:

<annotations

<appinfo>Note</appinfo>

<documentation xml:lang="en">This is a helping note!</documentations>
</annotations>

//Could be translated to:
// Note: This is a helping note !

7.9 Group components

XSD group definition, defined globally, enables groups of elements to be defined and named, so that the elements can
be used to build up the content models of complex types. The child of a group shall be one of the all, choice or
sequence compositors.

They shall be mapped the same way as complexTypes with one difference: the "untagged” encoding instruction shall be
attached to the TTCN-3 corresponding to the group element (but, of course, will always represent a subset of complex
types, as only the above compositors are allowed as child and can never have attributes).

EXAMPLE: Mapping of groups.

<xs:group name="shipAndBill">
<XS:sequence>
<xs:element name="shipTo" type="xs:string"/>
<xs:element name="billTo" type="xs:string"/>
</xs:sequence>
</xs:group>

<xs:group name="shipOrBill"s>
<xs:choice>
<xs:element name="shipTo" type="xs:string"/>
<xs:element name="billTo" type="xs:string"/>
</xs:choice>
</xs:group>

<xs:group name="shipAndBillAll"s>
<xs:all>
<xs:element name="shipTo" type="xs:string"/>
<xs:element name="billTo" type="xs:string"/>
</xs:all>
</xs:group>

//Is translated to TTCN-3 as:

type record ShipAndBill {
XSD.String shipTo,
XSD.String billTo

with {
variant "untagged"
}
type record ShipOrBill {

XSD.String shipTo,

ETSI

70

XSD.String billTo

with {
variant "untagged"
}

type record ShipAndBillall {
record of enumerated { shipTo, billTo } order,
XSD.String shipTo,
XSD.String billTo

with {

variant "untagged";
variant "useOrder"

ETSI

ETSI ES 201 873-9 V4.1.1 (2009-06)

71 ETSI ES 201 873-9 V4.1.1 (2009-06)

Annex A (normative):
TTCN-3 module XSD

This annex defines a TTCN-3 module containing type definitions equivalent to XSD built-in types.

NOTE: The capitalized type names used in annex A of ITU-T Recommendation X.694 [4] have been retained for
compatibility. All translated structures are the result of two subsequent transformations applied to the
XSD Schema: first, transformations described in ITU-T RecommendationX.694 [4], then transformations
described in ES 201 873-7 [2]. In addition, specific extensions are used that allow codecs to keep track of
the original XSD nature of a given TTCN-3 type.

module XSD

//These constants are used in the XSd date/time type definitions
const charstring

dash := "-",
cln = ":",
year := "(0(0(0[1-9]][1-9][0-9])][1-9]1[0-9][0-9])]|[1-9][0-9][0-9][0-9])",
yearExpansion := " (-([1-9] [0-91#(0,))#(,1))#(,1)",
month := "(0[1-9]|1[0-2])",
dayOfMonth := "(0[1-9]|[12] [0-9]|3[01])",
hour := "([01] [0-9]|2[0-3])",
minute := " ([0-5][0-9])",
second := " ([0-5][0-9])",
sFraction := "(.[0-91#(1,))#(,1)",
endOfDayExt := "24:00:00(.0#(1,))#(,1)",
nums := "[0-9]1#(1,)",
ZorTimeZoneExt := " (Z| [\+\-1((0[0-9]]|1[0-3]):[0-5][0-9]|14:00))#(,1)",
durTime := "(T[0-9]1#(1,)"&
"(H([0-91#(1,) (M([0-91#(1,) (S|.[0-91#(1,)S))#(,1)|.[0-91#(1,)S[S))#(,1)|"&
"M([0-91#(1,) (S|.[0-91#(1,)S)|.[0-91#(1,)M#(,1)|"&
ns|n&
".[0-91#(1,)8))"
//anySimpleType

type XMLCompatibleString AnySimpleType with {

variant "XSD:anySimpleType"
Vi
//anyType;

type record AnyType

{

record of String attr,
record of String elem list
} with {

variant "XSD:anyType";

variant (attr) "anyAttributes";
variant (elem_list) "anyElement";

}i
// String types

type XMLCompatibleString String with {
variant "XSD:string"
}i

type XMLStringWithNoCRLFHT NormalizedString with {
variant "XSD:normalizedString"
}i

type NormalizedString Token with {
variant "XSD:token"

type XMLStringWithNoWhitespace Name with {
variant "XSD:Name"

type XMLStringWithNoWhitespace NMTOKEN with {

ETSI

72 ETSI ES 201 873-9 V4.1.1 (2009-06)

variant "XSD:NMTOKEN"
i
type Name NCName with

variant "XSD:NCName"

type NCName ID with {
variant "XSD:ID"

type NCName IDREF with
variant "XSD:IDREF"

type NCName ENTITY with
variant "XSD:ENTITY"

type octetstring HexBinary with {
variant "XSD:hexBinary"

type octetstring Base64Binary with {
variant "XSD:base64Binary";

}i

type XMLStringWithNoCRLFHT AnyURI with {
variant "XSD:anyURI"
i

type charstring Language (pattern "[a-zA-Z]#(1,8) (-\w#(1,8))#(0,)") with {
variant "XSD:language"
Vi

// Integer types

type integer Integer with
variant "XSD:integer"

type integer PositivelInteger (1 .. infinity) with {
variant "XSD:positiveInteger™"

type integer NonPositiveInteger (-infinity .. 0) with ({
variant "XSD:nonPositiveInteger"

type integer Negativelnteger (-infinity .. -1) with {
variant "XSD:negativeInteger™"

type integer NonNegativeInteger (0 .. infinity) with {
variant "XSD:nonNegativeInteger"

type longlong Long with {
variant "XSD:long"

type unsignedlonglong UnsignedLong with {
variant "XSD:unsignedLong"

type long Int with {
variant "XSD:int"

type unsignedlong UnsignedInt with {
variant "XSD:unsignedInt"

type short Short with
variant "XSD:short"

ETSI

i
type unsignedshort UnsignedShort with

variant "XSD:unsignedShort™"

type byte Byte with {
variant "XSD:byte"
}i

type unsignedbyte UnsignedByte with {
variant "XSD:unsignedByte"

}i
// Float types
type float Decimal with {

variant "XSD:decimal"

type IEEE754float Float with {
variant "XSD:float"
}i

type IEEE754double Double with {
variant "XSD:double"

i

// Time types

type charstring Duration (pattern ") with {
variant "XSD:duration"
Vi

type charstring Duration (pattern

"{dash}#(,1)P({nums} (Y ({nums} (M({nums}D{durTime } # (
"{durTime}#(,1)) |M({nums}D{durTime}#(,1) | {durTime}

) with {
variant "XSD:duration"
}i

type charstring DateTime (pattern

;1)
#(,1

ETSI ES 201 873-9 V4.1.1 (2009-06)

{durTime}#(,1)) |D{durTime}#(,1)) |" &
)) |D{durTime}#(,1)) | {durTime})"

"{yearExpansion}{year}{dash}{month}{dash}{dayOofMonth}T ({hour}{cln}{minute}{cln}{second}" &

"{sFraction} | {endOfDayExt}) { ZorTimeZoneExt }"
) with {
variant "XSD:dateTime"
i

type charstring Time (pattern

" ({hour}{cln}{minute}{cln}{second}{sFraction} | {endOfDayExt}) {ZorTimeZoneExt}"

) with {
variant "XSD:time"
Vi

type charstring Date (pattern

"{yearExpansion}{year}{dash}{month}{dash}{dayOfMonth}{ZorTimeZoneExt}"

) with {
variant "XSD:date"
Vi

type charstring GYearMonth (pattern

"{yearExpansion}{year}{dash}{month}{ZorTimeZoneExt }"

) with {
variant "XSD:gYearMonth"
i

type charstring GYear (pattern
"{yearExpansion}{year}{ZorTimeZoneExt }"
) with {
variant "XSD:gYear"
}i

type charstring GMonthDay (pattern

"{dash}{dash}{month}{dash}{dayOfMonth}{ZorTimeZoneExt}"

) with {
variant "XSD:gMonthDay"
}i

type charstring GDay (pattern

ETSI

74

"{dash}{dash}{dash}{dayOfMonth}{ZorTimeZoneExt }"
) with {
variant "XSD:gDay"
}i

type charstring GMonth (pattern
"{dash}{dash}{month}{ZorTimeZoneExt }"
) with {
variant "XSD:gMonth"
}i

// Sequence types

type record of NMTOKEN NMTOKENS with {
variant "XSD:NMTOKENS"
i

type record of IDREF IDREFS with
variant "XSD:IDREFS"
Vi

type record of ENTITY ENTITIES with ({
variant "XSD:ENTITIES"
}i

type record QName

{
AnyURI uri optional,
NCName name
twith {
variant "XSD:QName"

i
// Boolean type

type boolean Boolean with
variant "XSD:boolean"
i

ETSI ES 201 873-9 V4.1.1 (2009-06)

//TTCN-3 type definitions supporting the mapping of W3C XML Schema built-in datatypes

type utf8string XMLCompatibleString
(
char(0,0,0,9).. char(0,0,0,9),
char(0,0,0,10)..char(0,0,0,10),
char(0,0,0,12)..char(0,0,0,12),
char(0,0,0,32)..char(0,0,215,255),
char(0,0,224,0) ..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)
)

type utf8string XMLStringWithNoWhitespace
(
char(0,0,0,33)..char(0,0,215,255),
char (0,0,224,0) ..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)

)

type utf8string XMLStringWithNoCRLFHT
(
char(0,0,0,32)..char(0,0,215,255),
char(0,0,224,0)..char(0,0,255,253),
char(0,1,0,0)..char(0,16,255,253)

}//end module

ETSI

75 ETSI ES 201 873-9 V4.1.1 (2009-06)

Annex B (normative):
Encoding instructions

As described in clause 5 of the present document, in case of explicit mapping, the information not necessary to produce
valid TTCN-3 abstract types and values but needed to produce the correct encoded value (an XML document), shall be
retained in encoding instructions. Encoding instructions are contained in TTCN-3 encode and variant attributes
associated with the TTCN-3 definition, field or value of a definition. This annex defines the encoding instructions for
the XSD to TTCN-3 mapping.

NOTE: In case of implicit mapping the information needed for correct encoding is to be retained by the TTCN-3
tool internally and thus its form is out of scope of the present document.

B.1 General

A single attribute shall contain one encoding instruction only. Therefore, if several encoding instructions shall be
attached to a TTCN-3 language element, several TTCN-3 attributes shall be used.

The "syntactical structure™ paragraph of each clause below identify the syntactical elements of the attribute (i.e. inside
the "with { }" statement. The syntactical elements shall be separated by one or more whitespace characters. A
syntactical element may precede or follow a double quote character without a whitespace character. There shall be no
whitespace between an opening single quote character and syntactical element directly following it and between a
closing single quote character and the syntactical element directly preceding it. All characters (including whitespaces)
between a pair of single quote characters shall be part of the encoding instruction.

Typographical conventions: bold font identify TTCN-3 keywords. The syntactical elements freetext and name are
identified by italic font; they shall contain one or more characters and their contents are specified by the textual
description of the encoding instruction. Normal font identify syntactical elements that shall occur within the TTCN-3
attribute as appear in the syntactical structure. The following character sequences identify syntactical rules and shall not
appear in the encoding instruction itself:

. (]) - identify alternatives.
. [1- identify that the part of the encoding instruction within the square brackets is optional.
e {}-identify zero or more occurrences of the part between the curly brackets.

. - identify the opening or the enclosing double quote of the encoding instruction.

B.2 The XML encode attribute

The encode attribute "XML" shall be used to identify

Syntactical structure

encode """ (XML | XML1.0 | XML1.1) ""n
Applicable to (TTCN-3)
Module, group, definition.

ETSI

76 ETSI ES 201 873-9 V4.1.1 (2009-06)

B.3 Encoding instructions

B.3.1 XSD data type identification

Syntactical structure(s)

variant ™" (XSD:string | XSD:normalizedString | XSD:token | XSD:Name | XSD:NMTOKEN |
XSD:NCName | XSD:ID | XSD:IDREF | XSD:ENTITY | XSD:hexBinary | XSD:base64Binary |
XSD:anyURI | XSD:language | XSD:integer | XSD:positivelnteger | XSD:nonPositivelnteger |
XSD:negativelnteger | XSD:nonNegativelnteger | XSD:long | XSD:unsignedLong | XSD:int |
XSD:unsignedint | XSD:short | XSD:unsignedShort | XSD:byte | XSD:unsignedByte |
XSD:decimal | XSD:float | XSD:double | XSD:duration | XSD:dateTime | XSD:time | XSD:date |
XSD:gYearMonth | XSD:gYear | XSD:gMonthDay | XSD:gDay | XSD:gMonth |
XSD:NMTOKENS | XSD:IDREFS | XSD:ENTITIES | XSD:QName | XSD:boolean) """

Applicableto (TTCN-3)

These encoding instructions shall not appear in a TTCN-3 module mapped from XSD. They are attached to the TTCN-3
type definitions corresponding to XSD data types.

Description

The encoder and decoder shall handle instances of a type according to the corresponding XSD data type definition. In
particular, record of elements of instances corresponding to the XSD sequence types NMTOKENS IDREFS and
ENTITIES shall be combined into a single XML list value using a single space as separator between the list elements.
At decoding the XML list value shall be mapped to a TTCN-3 record of value by separating the list into its itemType
elements (the whitespaces between the itemType elements shall not be part of the TTCN-3 value). The uri and name
fields of a TTCN-3 instance of an XSD:QName type shall be combined to an XSD QName value at encoding. At
decoding an XSD QName value shall be separated to the URI part and the non-qualified name part (the double colon
between the two shall be disposed) and those parts shall be assigned to the uri and name fields of the corresponding
TTCN-3 value correspondingly.

B.3.2 Any element

Syntactical structure(s)

variant """ anyElement [except ('freetext’ | unqualified) |
from [unqualified] [{ 'freetext’, } ‘freetext'] 1™

Applicableto (TTCN-3)
Fields of structured types generated for the XSD any element (see clause 7.7).
Description

One TTCN-3 attribute shall be generated for each field corresponding to an XSD any element. The freetext part(s) shall
contain the URI(s) identified by the namespace attribute of the XSD any element. The namespace attribute may also
contain wildcard. They shall be mapped as given in table B.1.

ETSI

77 ETSI ES 201 873-9 V4.1.1 (2009-06)

Table B.1: Mapping namespace attribute wildcards

acet Value of the XSD Except or from clause in the Remark
namespace attribute TTCN-3 attribute
sany <nor except neither from clause
present>
type ##local from unqualified
##other Also disallows unqualified

except "<target namespace of the
ancestor schema element of the
given any element>"

elements, i.e. elements
without a target
namespace

##other In the case no target
namespace is ancestor
schema element of the
given any element

except unqualified

##targetNamespace from "<target namespace of the
ancestor schema element of the
given any element >"

"http://Iwww.w3.0rg/1999/xhtml from
##targetNamespace” "http://www.w3.0rg/1999/xhtml",
"<target namespace of the
ancestor schema element of the
given any element >"

B.3.3 Any attributes

Syntactical structure(s)
variant """ anyAttributes [except 'freetext’ | from [unqualified ,] { 'freetext’, } ‘freetext] ™"
Applicableto (TTCN-3)
Fields of structured types generated for the XSD anyAttribute element (see clause 7.7).
Description

Except its applicability it shall be constructed and used the same way as the anyElement encoding instruction
(see clause B.3.2).

B.3.4 Attribute

Syntactical structure(s)
variant """ attribute """
Applicableto (TTCN-3)
Top-level type definitions and fields of structured types generated for XSD attribute elements.
Description

This encoding instruction designates that the instances of the TTCN-3 type or field shall be encoded and decoded as
XML attributes.

B.3.5 AttributeFormQualified

Syntactical structure(s)

variant """ attributeFormQualified """
Applicableto (TTCN-3)
Modules.

ETSI

78 ETSI ES 201 873-9 V4.1.1 (2009-06)

Description

This encoding instruction designates that names of XML attributes that are instances of TTCN-3 definitions in the given
module shall be encoded as qualified names and at decoding qualified names shall be expected as valid attribute names.

B.3.6 Control Namespace identification
Syntactical structure(s)

variant """ controlNamespace ‘freetext’ prefix ‘freetext’ "™
Applicableto (TTCN-3)
Module.
Description

The control namespace is the namespace to be used for the type identification attributes and schema instances (e.g. in
the special XML attribute value "xsi:nil", see mapping of the nillable XSD attribute in clause 7.1.11). It shall be
specified globally, with an encoding instruction attached to the TTCN-3 module.

The first freetext component identifies the namespace (normally "http://www.w3.0rg/2001/XML Schema-instance™ is
used), the second freetext component identifies the namespace prefix (normally "xsi" is used).

B.3.7 Default for empty

Syntactical structure(s)
variant """ defaultForEmpty as ‘freetext’ """
Applicableto (TTCN-3)
TTCN-3 components generated for XSD attribute or element elements with a fixed or default attribute.
Description

The "freetext" component shall designate a valid value of the type to which the encoding instruction is attached to. This
encoding instruction has no effect on the encoding process and designates that the decoder shall insert the value
specified by freetext if the corresponding attribute or element is omitted in the received XML document.

B.3.8 Element

Syntactical structure(s)

variant """ element
Applicableto (TTCN-3)
Top-level type definitions generated for XSD element elements that are direct children of a schema element.
Description

This encoding instruction designates that the instances of the TTCN-3 type shall be encoded and decoded as XML
elements.

B.3.9 ElementFormQualified

Syntactical structure(s)

variant """ elementFormQualified

ETSI

79 ETSI ES 201 873-9 V4.1.1 (2009-06)

Applicableto (TTCN-3)
Modules.
Description

This encoding instruction designates that tags of XML local elements that are instances of TTCN-3 definitions in the
given module shall be encoded as qualified names and at decoding qualified names shall be expected as valid element
tags names.

B.3.10 Embed values

Syntactical structure(s)

variant embedValues

Applicableto (TTCN-3)

TTCN-3 record types generated for XSD complexType-s and complexContent-s with the value of the mixed attribute
"true".

Description

The encoder shall encode the record type to which this attribute is applied in a way, which produces the same result as
the following procedure: first a partial encoding of the record is produced, ignoring the embed_values field. The first
string of the embed_values field (the first record of element) shall be inserted at the beginning of the partial encoding,
before the start-tag of the first XML element (if any). Each subsequent string shall be inserted between the end-tag of
the XML element and the start-tag of the next XML element (if any), until all strings are inserted. In the case the
maximum allowed number of strings is present in the TTCN-3 value (the number of the XML elements in the partial
encoding plus one) the last string will be inserted after end-tag of the last element (to the very end of the partial
encoding). The following special cases apply:

a) Atdecoding, strings before, in-between and following the XML elements shall be collected as individual
components of the embed_values field. If no XML elements are present, and there is also a defaultForEmpty
encoding instruction on the sequence type, and the encoding is empty, a decoder shall interpret it as an
encoding for the freetext part specified in the defaultForEmpty encoding instruction and assign this abstract
value to the first (and only) component of the embed_values field.

b) If the type also has a useNil encoding instruction and the optional component is absent, then the embedValues
encoding instruction has no effect.

¢) If the type has a useNil encoding instruction and if a decoder determines that the optional component is
present, by the absence of a nil identification attribute (or its presence with the value false), then item a) above
shall apply.

B.3.11 Form

Syntactical structure(s)

variant """ form as (qualified | unqualified)
Applicableto (TTCN-3)

Top-level type definitions generated for XSD attribute elements and fields of structured type definitions generated for
XSD attribute or element elements.

Description

This encoding instruction designates that names of XML attributes or tags of XML local elements corresponding to
instances of the TTCN-3 type or field of type to which the form encoding instruction is attached, shall be encoded as
qualified or unqualified names respectively and at decoding qualified or unqualified names shall be expected
respectively as valid attribute names or element tags.

ETSI

80 ETSI ES 201 873-9 V4.1.1 (2009-06)

B.3.12 List

Syntactical structure(s)
variant """ list """
Applicableto (TTCN-3)
Record of types mapped from XSD simpleType-s derived as a list type.
Description

This encoding instruction designates that the record of type shall be handled as an XSD list type, namely, record of
elements of instances shall be combined into a single XML list value using a single SP(32) (space) character as
separator between the list elements. At decoding the XML list value shall be mapped to a TTCN-3 record of value by
separating the list into its itemType elements (the whitespaces between the itemType elements shall not be part of the
TTCN-3 value).

B.3.13 Name

Syntactical structure(s)

variant """ name (as ('freetext' | changeCase) | all as changeCase) """,

where changeCase := (capitalized | uncapitalized | lowercased | uppercased)
Applicableto (TTCN-3)

Type or field of structured type. The form when freetext is empty shall be applied to fields of union types with the
"useUnion" encoding instruction only (see clause B.3.16).

Description

The name encoding instruction identifies if the name of the TTCN-3 definition or field differs from the value of the
name attribute of the related XSD element. The name resulted from applying the name encoding attribute shall be used
as the non-qualified part of the name of the corresponding XML attribute or element tag.

When the "name as ‘freetext™ form is used, freetext shall be used as the attribute name or element tag, instead of the
name of the related TTCN-3 definition (e.g. TTCN-3 type name or field name).

The "name as ™ (i.e. freetext is empty) form designates that the TTCN-3 field corresponds to an XSD unnamed type,
thus its name shall not be used when encoding and decoding XML documents.

The "name as capitalized" and "name as uncapitalized" forms identify that only the first character of the related
TTCN-3 type or field name shall be changed to lower case or upper case respectively.

The "name as lowercased " and "name as uppercased * forms identify that each character of the related TTCN-3 type or
field name shall be changed to lower case or upper case respectively.

The "name all as capitalized”, "name all as uncapitalized”, "name as lowercased™ and "name as uppercased” forms has
effect on all direct fields of the TTCN-3 definition to which the encoding instruction is applied (e.g. in case of a
structured type definition to the names of its fields in a non-recursive way but not to the name of the definition itself and
not to the name of fields embedded to other fields).

B.3.14 Namespace identification

Syntactical structure(s)
variant """ namespace as 'freetext' [prefix 'freetext'] """
Applicableto (TTCN-3)

) Modules.

ETSI

81 ETSI ES 201 873-9 V4.1.1 (2009-06)

. Fields of record types generated for attributes of complexTypes taken in to complexType definitions by
referencing attributeGroup(s), defined in schema elements with a different (but not absent) target namespace
and imported into the schema element which is the ancestor of the complexType.

Description

The first freetext component identifies the namespace to be used in qualified XML attribute names and element tags at
encoding, and to be expected in received XML documents. The second freetext component is optional and identifies the
namespace prefix to be used at XML encoding. If the prefix is not specified, the encoder shall either identify the
namespace as the default namespace (if all other namespaces involved in encoding the XML document have prefixes)
or shall allocate a prefix to the namespace (if more than one namespace encoding instructions are missing the prefix
part).

B.3.15 Nillable elements

Syntactical structure(s)

variant useNil

Applicableto (TTCN-3)
Top-level record types or record fields generated for nillable XSD element elements.
Description

The encoding instruction designates that the encoder, when the optional field of the record (corresponding to the
nillable element) is omitted, it shall produce the XML element with the xsi:nil="true" attribute and no value,. When the
nillable XML element is present in the received XML document and carries the xsi:nil="true" attribute, the optional
field of the record in the corresponding TTCN-3 value shall be omitted. If the nillable XML element carries the
xsi:nil="true" attribute and has a children (either any character or element information item) at the same time, the
decoder shall initiate a test case error.

B.3.16 Use Union

Syntactical structure(s)

variant """ useUnion
Applicableto (TTCN-3)
Types and field of structured types generated for XSD simpleTypes derived by union (see clause 7.5.3).
Description

The encoding instruction designates that the encoder shall not use the start-tag and the end-tag around the encoding of
the selected alternative (field of the TTCN-3 union type) and shall use the type identification attribute, identifying the
XSD base datatype of the selected alternative, except when encoding attributes or the encoded component has a "list"
encoding instruction attached. At decoding the decoder shall place the received XML value into the corresponding
alternative of the TTCN-3 union type, based on the received value and the type identification attribute, if present.

B.3.17 Text

Syntactical structure(s)

variant """ text ('name' as ('freetext’ |) | all as changeCase)

NOTE 1: The definition of changeCase is given in clause B.3.13.

ETSI

82 ETSI ES 201 873-9 V4.1.1 (2009-06)

Applicableto (TTCN-3)

Enumeration types generated for XSD enumeration facets where the enumeration base is a string type (see clause 6.1.5,
first paragraph), and the name(s) of one or more TTCN-3 enumeration values is(are) differs from the related XSD
enumeration item. XSD.Boolean types, instances of XSD.Boolean types(see clause 6.7).

Description

When name is used, it shall be generated for the differing enumerated values only. The name shall be the identifier of
the TTCN-3 enumerated value the given instruction relates to. If the difference is that the first character of the XSD
enumeration item value is a capital letter while the identifier of the related TTCN-3 enumeration value starts with a
small letter, the "text 'name’ as capitalized” form shall be used. Otherwise, freetext shall contain the value of the related
XSD enumeration item.

NOTE 2: The "text name' as uncapitalized", "text 'name' as lowercased" and "text 'name' as uppercased" forms are
not generated by the current version of this specification but tools are encouraged to support also these
encoding instructions for consistency with the "name as ... " encoding instruction.

If the first characters of all XSD enumeration items are capital letters, while the names of all related TTCN-3
enumeration values are identical to them except the case of their first characters, the "text all as capitalized" form shall
be used.

The encoding instruction designates that the encoder shall use freetext or the capitalized name(s) when encoding the
TTCN-3 enumeration value(s) and vice versa.

When the text encoding attribute is used with XSD.Boolean types, the decoder shall accept all four possible XSD
boolean values and map the received value 1 to the TTCN-3 boolean value true and the received value 0 to the
TTCN-3 boolean value false. When the text encoding attribute is used on the instances of the XSD.Boolean type, the
encoder shall encode the TTCN-3 values according to the encoding attribute (i.e. true as 1 and false as 0).

B.3.18 Use number

Syntactical structure(s)

variant useNumber
Applicableto (TTCN-3)

Enumeration types generated for XSD enumeration facets where the enumeration base is integer (see clause 6.1.5,
second paragraph).

Description

The encoding instruction designates that the encoder shall use the integer values associated to the TTCN-3 enumeration
values to produce the value or the corresponding XML attribute or element (as opposed to the names of the TTCN-3
enumeration values) and the decoder shall map the integer values in the received XML attribute or element to the
appropriate TTCN-3 enumeration values.

B.3.19 Use order

Syntactical structure(s)

variant useOrder """
Applicableto (TTCN-3)

Record type definition, generated for XSD complexType-s with all constructor (see clause 7.6.4).

ETSI

83 ETSI ES 201 873-9 V4.1.1 (2009-06)

Description

The encoding instruction designates that the encoder shall encode the values of the fields corresponding to the children
elements of the all constructor according to the order identified by the elements of the order field. At decoding, the
received values of the XML elements shall be placed in their corresponding record fields and a new record of element
shall be inserted into the order field for each XML element processed (the final order of the record of elements shall
reflect the order of the XML elements in the encoded XML document).

B.3.20 Whitespace control

Syntactical structure(s)

variant """ whitespace (preserve | replace | collapse)
Applicableto (TTCN-3)

Types or fields of structured types generated for XSD components with the whitespace facet.
Description

The encoding instruction designates that the encoder shall normalize the encoded XML value corresponding to the
TTCN-3 constructed with the whitespace encoding instruction, and the received XML value shall be normalized before
decoding as below.

NOTE: The XSD whitespace facet can also be applied to XSD list types. As components of XSD list types shall
not have whitespace characters and the encoder shall place a single space character between the list
components (see clause B.3.12), this encoding instruction has no effect on XSD list types at encoding.

. Preserve: no normalization shall be done, the value is not changed (this is the behaviour required by XML
Schema Part 2 [9] for element content).

. Replace: all occurrences of HT(9) (horizontal tabulation), LF(10) (line feed) and CR(13) (carriage return) shall
be replaced with an SP(32) (space) character.

. Collapse: after the processing implied by replace, contiguous sequences of SP(32) (space) characters are
collapsed to a single SP(32) (space) character, and leading and trailing SP(32) (space) characters are removed.

ETSI

84 ETSI ES 201 873-9 V4.1.1 (2009-06)

Annex C (informative):
Examples

The following examples show how a mapping would look like for example XML Schemas. It is only intended to give
an impression of how the different elements have to be mapped and used in TTCN-3.

C.1 Examplel

XML Schema:
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<!-- This is an embedded example. An element with a sequence body and an attribute.
The sequence body is formed of elements, two of them are also complexTypes.-->

<xs:element name="shiporder"s
<xs:complexType>
<XS:sequence>

<xs:element name="orderperson" type="xs:string"/>

<xs:element name="shipto">
<xs:complexType>
<Xs:sequence>

<xs:element

<xs:element

<xs:element

<xs:element

</Xs:sequence>
</xs:complexType>

</xs:element>

name="name" type="xs:string"/>
name="address" type="xs:string"/>
name="city" type="xs:string"/>
name="country" type="xs:string"/>

<xs:element name="item" >
<xs:complexType>
<Xs:sequence>

<xs:element

<xs:element

<xs:element

<xs:element

</Xs:sequence>
</xs:complexType>

</xs:element>

name="title" type="xs:string"/>
name="note" type="xs:string" minOccurs="0"/>
name="quantity" type="xs:positiveInteger"/>
name="price" type="xs:decimal"/>

</xs:sequence>
<xs:attribute name="orderid" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

TTCN-3 Module:
module Examplel {
import from XSD language "XML" all;
type record Shiporder {
XSD.String orderid,

XSD.String orderperson,
record

XSD.String
XSD.String
XSD.String
XSD.String
} shipto,
record

XSD.String
XSD.String

name,
address_1,
city,
country

title,

note optional,

ETSI

85

XSD.PositiveInteger quantity,
XSD.Decimal price
} item
} with {
variant "name as uncapitalized";
variant (shipto.address 1) "name as 'address'";
variant (orderid) "attribute";

}

} with {
encode "XML";

}

module ExamplelTemplate {

import from XSD language "XML" all;
import from Examplel all;

template Shiporder t Shiporder:={
orderid:="18920320 17",
orderperson:="Dr.Watson",
shipto:=

name:="Sherlock Holmes",
addressField:="Baker Street 221B",
city:="London",

country:="England"

title:="Memoirs",
note:= omit,
quantity:=2,
price:=3.5

}

}//end module

<?xml version="1.0" encoding="UTF-8"?>
<shiporder orderid=18920320_17>
<orderperson>Dr.Watson</orderperson>
<shipto>

<name>Sherlock Holmes</name>
<address>Baker Street 221B</address>
<city>London</city>
<country>England</country>

</shipto>

<item>

<title>Memoirs</title>
<quantity>2</quantity>
<price>3.5</price>

</item>

</shiporder>

ETSI ES 201 873-9 V4.1.1 (2009-06)

C.2 Example 2

XML Schema:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:simpleType name="S1">
<xs:restriction base="xs:integer"s>
<xs:maxInclusive value="2"/>
</xs:restrictions>
</xs:simpleType>

ETSI

<xs:simpleType name="S2">
<xs:restriction base="S1">
<xs:minInclusive value="-23"/>
<xs:maxInclusive value="1"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="S3">
<xs:restriction base="S2">
<xs:minInclusive value="-3"/>
<xs:maxExclusive value="1"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="Cl">
<xs:simpleContent>
<xs:extension base="S3">
<xs:attribute name="Al" type="xs
</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:schema>

TTCN-3 Module:

module Example2 {

import from XSD language "XML" all;

type XSD.Integer S1 (-infinity .. 2);
type S1 S2 (-23 .. 1);
type S2 S3 (-3 .. 0);

type record C1 {

S3 base,
XSD.Integer al optional,
XSD.Float a2 optional
} with {
variant (al,a2) "name as capitalized ";
variant (al,a2) "attribute";

variant (base) "untagged"
} with {
encode "XML";
1

module Example2Templates {

import from XSD language "XML" all;
import from Example2 all;

template t Cl:=

base :=-1,
al =1,
a2 :=2.0

<?xml version="1.0" encoding="UTF-8"?>
<Cl Al=1 A2=2.0>-1</Cl>

86

:integer"/>
<xs:attribute name="A2" type="xs:float"/>

ETSI

ETSI ES 201 873-9 V4.1.1 (2009-06)

87 ETSI ES 201 873-9 V4.1.1 (2009-06)

C.3 Example 3

XML Schema:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns="nsA" targetNamespace="nsA">

<xs:complexType name="Cl">
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attribute name="Al" type="xs:integer"/>
<xs:attribute name="A2" type="xs:integer"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:complexType name="C2">
<xs:simpleContent>
<xs:restriction base="C1l">
<xs:minInclusive value="23"/>
<xs:maxInclusive value="26"/>
<xs:attribute name="Al" type="xs:byte" use="required"/>
<xs:attribute name="A2" type="xs:negativelnteger"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>

<xs:complexType name="C3">
<xs:simpleContent>
<xs:restriction base="C2">
<xs:minInclusive value="25"/>
<xs:maxInclusive value="26"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>

</xs:schema>

TTCN-3 Module:

module Example3
import from XSD language “XML” all;

type record Cl ({
XSD.Integer base,
XSD.Integer al optional,
XSD.Integer a2 optional

} with {
variant (al,a2) "name as capitalized";
variant (al,a2) "attribute";

variant (base) "untagged"

}

type record C2 ({

XSD.Integer (23 .. 26) base,

XSD.Byte al,

XSD.NegativeInteger a2 optional
} with {

variant (al,a2) "name as capitalized";
variant (al,a2) "attribute";
variant (base) "untagged"

}

type record C3 ({

XSD.Integer (25 .. 26) base,

XSD.Byte ail,

XSD.NegativeInteger a2 optional
} with {

variant (al,a2) "name as capitalized";
variant (al,a2) "attribute";
variant (base) "untagged"

ETSI

} with {
encode “XML”;

88

variant "namespace as ‘nsA’"

}

module Example3Templates {

import from XSD language “XML” all;
import from Example3 all;

template t Cl:=

base
al =1,
az =2

:=-1000,

template t C2:= {

base
al
az

template t C3:=

base =25,
al =1,
a2 :=-1000

}

<?xml version="1.0" encoding="UTF-8"7?>
<Cl xmlns="nsA” Al=1 A2=2>-1000</Cl>

<?xml version="1.0" encoding="UTF-8"7?>
<C2 xmlns="nsA” Al=1 A2=-2>24</C2>

<?xml version="1.0" encoding="UTF-8"7?>
<C3 xmlns="nsA” Al=1 A2=-1000>25</C3>

ETSI ES 201 873-9 V4.1.1 (2009-06)

C.4 Example 4

XML Schema:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:NA="nsA" targetNamespace="nsA">

<xs:include

schemalLocation="Example3.xsd"/>

<xs:import schemalLocation="Example2.xsd"/>

<xs:complexType name="newCl">
<xs:complexContent>

<XS:

extension base="NA:C1"/>

</xs:complexContent>
</xs:complexType>

<xs:simpleType name="newS1l">
<xs:restriction base="S1"/>
</xs:simpleType>

</xs:schema>

TTCN-3 Module:

module Example4

import from
import from
import from

{

XSD language “XML” all;
Example2 language "XML" all;
Example3 language "XML" all;

type Example3.Cl NewCl
with {variant "name as uncapitalized"}

ETSI

89

type Example2.S1 NewS1l
with {variant "name as uncapitalized"}

} with {
encode “XML”;
variant “namespace as ‘nsA’ prefix ‘NA’"

}

module Example4Templates {

import from XSD language “XML” all;
import from Example2 language "XML" all;
import from Example3 language "XML" all;
import from Example4 all;

template t NewCl:= {

base :=-1000,
al =1,
az =2

}

template NewSl:=1

}

<?xml version="1.0"” encoding="UTF-8"?>
<NA:newCl xmlns:NA="nsA” Al=1 A2=2>-1000</NA:newCl>

<?xml version="1.0" encoding="UTF-8"7?>
<NA:newSl xmlns:NA="nsA”>1</NA:newSl>

ETSI

ETSI ES 201 873-9 V4.1.1 (2009-06)

90 ETSI ES 201 873-9 V4.1.1 (2009-06)

History
Document history
V3.3.1 July 2008 Publication
V4.1.1 March 2009 Membership Approval Procedure MV 20090522: 2009-03-24 to 2009-05-22
V4.1.1 June 2009 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Mapping XML Schemas
	5.1 Namespaces and document references
	5.2 Name conversion
	5.2.1 General
	5.2.2 Name conversion rules
	5.2.3 Order of the mapping

	5.3 Unsupported features

	6 Built-in data types
	6.1 Mapping of facets
	6.1.1 Length
	6.1.2 MinLength
	6.1.3 MaxLength
	6.1.4 Pattern
	6.1.5 Enumeration
	6.1.6 WhiteSpace
	6.1.7 MinInclusive
	6.1.8 MaxInclusive
	6.1.9 MinExclusive
	6.1.10 MaxExclusive
	6.1.11 Total digits

	6.2 String types
	6.2.1 String
	6.2.2 Normalized string
	6.2.3 Token
	6.2.4 Name
	6.2.5 NMTOKEN
	6.2.6 NCName
	6.2.7 ID
	6.2.8 IDREF
	6.2.9 ENTITY
	6.2.10 Hexadecimal binary
	6.2.11 Base 64 binary
	6.2.12 Any URI
	6.2.13 Language
	6.2.14 NOTATION

	6.3 Integer types
	6.3.1 Integer
	6.3.2 Positive integer
	6.3.3 Non-positive integer
	6.3.4 Negative integer
	6.3.5 Non-negative integer
	6.3.6 Long
	6.3.7 Unsigned long
	6.3.8 Int
	6.3.9 Unsigned int
	6.3.10 Short
	6.3.11 Unsigned Short
	6.3.12 Byte
	6.3.13 Unsigned byte

	6.4 Float types
	6.4.1 Decimal
	6.4.2 Float
	6.4.3 Double

	6.5 Time types
	6.5.1 Duration
	6.5.2 Date and time
	6.5.3 Time
	6.5.4 Date
	6.5.5 Gregorian year and month
	6.5.6 Gregorian year
	6.5.7 Gregorian month and day
	6.5.8 Gregorian day
	6.5.9 Gregorian month

	6.6 Sequence types
	6.6.1 NMTOKENS
	6.6.2 IDREFS
	6.6.3 ENTITIES
	6.6.4 QName

	6.7 Boolean type
	6.8 AnyType and anySimpleType types

	7 Mapping XSD components
	7.1 Attributes of XSD component declarations
	7.1.1 Id
	7.1.2 Ref
	7.1.3 Name
	7.1.4 MinOccurs and maxOccurs
	7.1.5 Default and Fixed
	7.1.6 Form
	7.1.7 Type
	7.1.8 Mixed
	7.1.9 Abstract
	7.1.10 Block and final
	7.1.11 Nillable
	7.1.12 Use
	7.1.13 Substitution group

	7.2 Schema component
	7.3 Element component
	7.4 Attribute and attribute group definitions
	7.4.1 Attribute element definitions
	7.4.2 Attribute group definitions

	7.5 SimpleType components
	7.5.1 Derivation by restriction
	7.5.2 Derivation by list
	7.5.3 Derivation by union

	7.6 ComplexType components
	7.6.1 ComplexType containing simple content
	7.6.1.1 Extending simple content
	7.6.1.2 Restricting simple content

	7.6.2 ComplexType containing complex content
	7.6.2.1 Complex content derived by extending complex types
	7.6.2.2 Complex content derived by restriction

	7.6.3 Group components
	7.6.4 All content
	7.6.5 Choice content
	7.6.5.1 Choice with nested elements
	7.6.5.2 Choice with nested group
	7.6.5.3 Choice with nested choice
	7.6.5.4 Choice with nested sequence
	7.6.5.5 Choice with nested any

	7.6.6 Sequence content
	7.6.6.1 Sequence with nested element content
	7.6.6.2 Sequence with nested group content
	7.6.6.3 Sequence with nested choice content
	7.6.6.4 Sequence with nested sequence content
	7.6.6.5 Sequence with nested any content
	7.6.6.6 Effect of the minOccurs and maxOccurs attributes on the mapping

	7.6.7 Attribute definitions, attribute and attributeGroup references
	7.6.8 Mixed content

	7.7 Any and anyAttribute
	7.8 Annotation
	7.9 Group components

	Annex A (normative): TTCN-3 module XSD
	Annex B (normative): Encoding instructions
	B.1 General
	B.2 The XML encode attribute
	B.3 Encoding instructions
	B.3.1 XSD data type identification
	B.3.2 Any element
	B.3.3 Any attributes
	B.3.4 Attribute
	B.3.5 AttributeFormQualified
	B.3.6 Control Namespace identification
	B.3.7 Default for empty
	B.3.8 Element
	B.3.9 ElementFormQualified
	B.3.10 Embed values
	B.3.11 Form
	B.3.12 List
	B.3.13 Name
	B.3.14 Namespace identification
	B.3.15 Nillable elements
	B.3.16 Use Union
	B.3.17 Text
	B.3.18 Use number
	B.3.19 Use order
	B.3.20 Whitespace control

	Annex C (informative): Examples
	C.1 Example 1
	C.2 Example 2
	C.3 Example 3
	C.4 Example 4

	History

